New method facilitates development of antibody-based drugs
2021-03-05
(Press-News.org) In recent years, therapeutic antibodies have transformed the treatment of cancer and autoimmune diseases. Now, researchers at Lund University in Sweden have developed a new, efficient method based on the genetic scissors CRISPR-Cas9, that facilitates antibody development. The discovery is published in Nature Communications.
Antibody drugs are the fastest growing class of drug, and several therapeutic antibodies are used to treat cancer. They are effective, often have few side effects and benefit from the body's own immune system by identifying foreign substances in the body. By binding to a specific target molecule on a cell, the antibody can either activate the immune system, or cause the cell to self-destruct.
However, most antibody drugs used today have been developed against an antibody target chosen beforehand. This approach is limited by the knowledge of cancer we have today and restricts the discovery of new medicines to currently known targets.
"Many antibody drugs currently target the same molecule, which is a bit limiting. Antibodies targeting new molecules could give more patients access to effective treatment", says Jenny Mattsson, doctoral student at the Department of Hematology and Transfusion Medicine at Lund University.
Another route - that pharmaceutical companies would like to go down - would be to search for antibodies against cancer cells without being limited to a pre-specified target molecule. In this way, new, unexpected target molecules could be identified. The problem is that this method (so-called "phenotypic antibody development") requires that the target molecule be identified at a later stage, which has so far been technically difficult and time-consuming.
"Using the CRISPR-Cas9 gene scissors, we were able to quickly identify the target molecules for 38 of 39 test antibodies. Although we were certain that the method would be effective, we were surprised that the results would be this precise. With previous methods, it has been difficult to find the target molecule even for a single antibody", says Jenny Mattsson.
The research project is a collaboration between Lund University, BioInvent International and the Foundation for Strategic Research. The researchers' method has already been put into practical use in BioInvent's ongoing research projects.
"We believe the method can help antibody developers and hopefully contribute to the development of new antibody-based drugs in the future", concludes Professor Björn Nilsson, who led the project.
INFORMATION:
ELSE PRESS RELEASES FROM THIS DATE:
2021-03-05
Researchers in the UK have developed a way to coax microscopic particles and droplets into precise patterns by harnessing the power of sound in air. The implications for printing, especially in the fields of medicine and electronics, are far-reaching.
The scientists from the Universities of Bath and Bristol have shown that it's possible to create precise, pre-determined patterns on surfaces from aerosol droplets or particles, using computer-controlled ultrasound. A paper describing the entirely new technique, called 'sonolithography', is published in Advanced Materials Technologies.
Professor Mike Fraser from the Department of Computer Science at the University of Bath, explained: "The power of ultrasound has already been shown to levitate small ...
2021-03-05
Anyone who has owned a smartphone for over a year is most likely aware that its built-in lithium (Li)-ion battery does not hold as much charge as when the device was new. The degradation of Li-ion batteries is a serious issue that greatly limits the useful life of portable electronic devices, indirectly causing huge amounts of pollution and economic losses. In addition to this, the fact that Li-ion batteries are not very durable is a massive roadblock for the market of electric vehicles and renewable energy harvesting. Considering the severity of these issues, it is no surprise that researchers have been actively ...
2021-03-05
In recent years, researchers have begun using functional magnetic resonance imaging (fMRI) not just for better understanding the neural bases of psychiatric illness, but also for experimental treatment of depression, ADHD, anxiety, PTSD, substance use disorder, and schizophrenia with a technique called real-time fMRI neurofeedback.
While rtfMRI-NF has emerged in recent years as a promising experimental intervention, it's also a costly procedure that requires extensive technical setup to allow for real-time analysis. That's why a quantitative data review was overdue.
A team of END ...
2021-03-05
In the brain, billions of neurons reach to each other, exchanging information, storing memories, reacting to danger and more. Scientists have barely scratched the surface of the most complex organ, but a new device to automatically collect tissue for analysis may allow for a quicker, deeper dive into the brain.
Their approach was published in IEEE/CAA Journal of Automatica Sinica, a joint publication of the IEEE and the Chinese Association of Automation.
"The ultimate goal of this study is to further promote the speed and quality of 3D-reconstruction of brain neural connections," said the author Long ...
2021-03-05
Insects that fall from the surrounding forest provide seasonal food for fish in streams. Researchers at Kobe University and The University of Tokyo have shown that the lengthening of this period has a profound effect on food webs and ecosystem functions present in streams.
These research results provide proof that changes in forest seasonality also affect the ecosystems of nearby rivers. This finding highlights the importance of predicting the effects of climate change on ecosystems.
The research group consisted of Associate Professor SATO Takuya and post-graduate student UEDA Rui of Kobe University's Graduate ...
2021-03-05
In a new study by the Yale Department of Immunobiology and Yale Cancer Center, researchers report combined liver and growth factor humanization enhances human red blood cell production and survival in circulation the immunodeficient murine host. The discovery could help in the development of treatments of life-threatening blood disorders, such as myelodysplastic syndrome, and diseases afflicting red blood cells, including sickle cell disease and malaria. The study is published online today in the journal Science.
"Red blood cell diseases, such as thalassemia and sickle cell disease involve approximately 5% of ...
2021-03-05
Professor Byoungwoo Kang develops a high-density cathode material through controlling local structures of the Li-rich layered materials.
Researchers in Korea have developed a high-capacity cathode material that can be stably charged and discharged for hundreds of cycles without using the expensive cobalt (Co) metal. The day is fast approaching when electric vehicles can drive long distances with Li- ion batteries.
Professor Byoungwoo Kang and Dr. Junghwa Lee of POSTECH's Department of Materials Science and Engineering have successfully developed a high energy-density cathode material that can stably maintain charge and discharge for over 500 cycles without the expensive ...
2021-03-05
Most people have heard of stem cells, cells from which all other cells with specialized functions are generated. Hematopoietic stem cells (HSCs) are the architects of blood cell development and are responsible for blood cell formation throughout the life of an organism. HSCs are also used in the treatment of cancer and immune disturbances.
Previous research into HSC transplantation has involved the use of adult and fetal mice. This has involved the removal of recipient HSCs using approaches including irradiation and the administration of DNA damaging drugs. In a first of its kind, researchers from the University of Tsukuba devised a novel approach for HSC deletion in mouse embryos. This report provides the first description of embryonic HSC depletion and transplantation of donor HSCs ...
2021-03-05
SMU Office of Research and Tech Transfer - One of the motivations for the recently published Journal of Accounting Research paper "Politically Connected Governments" was the daily experience with the subway system in New York City.
The author of the paper, SMU Assistant Professor of Accounting Kim Jungbae, told the Office of Research & Tech Transferthe research question for the paper which examines the consequences of powerful political connections for local governments, was inspired by the New York Times article "The Most Expensive Mile of Subway Track on Earth" (January 24, 2018).
"The article suggests that the NYC subway system is ...
2021-03-05
Since the start of the Covid-19 pandemic, charts and graphs have helped communicate information about infection rates, deaths, and vaccinations. In some cases, such visualizations can encourage behaviors that reduce virus transmission, like wearing a mask. Indeed, the pandemic has been hailed as the breakthrough moment for data visualization.
But new findings suggest a more complex picture. A study from MIT shows how coronavirus skeptics have marshalled data visualizations online to argue against public health orthodoxy about the benefits of mask mandates. Such "counter-visualizations" are often quite sophisticated, using datasets from official sources and state-of-the-art visualization ...
LAST 30 PRESS RELEASES:
[Press-News.org] New method facilitates development of antibody-based drugs