PRESS-NEWS.org - Press Release Distribution
PRESS RELEASES DISTRIBUTION

Pungent-variable of sweet chili pepper Shishito: genes and seeds

Pungent-variable of sweet chili pepper Shishito: genes and seeds
2021-03-09
(Press-News.org) Chili peppers (Capsicum spp.) are an important spice and vegetable that supports food culture around the world, whose intensity of its pungent taste is determined by the content of capsicumoids. However, the content of capsicumoids varies depending on the variety and is known to fluctuate greatly depending on the cultivation environment. This can be a big problem in the production, processing and distribution of peppers where sweet varieties can be spicy and highly spicy varieties are just only mildly spicy. It is thought that changes in the expression of multiple genes involved in capsaicinoid biosynthesis are involved in such changes in pungent taste depending on the cultivation environment, but the mechanism is not clear.

In Japan, the main variety of pepper is the vegetable pepper "Shishito", which has almost no spiciness. However, sometimes spicy fruits are produced, which makes eating shishito like playing Russian roulette. People have known from experience that "fruits with a fewer number of seeds are spicy". Researchers set out to determine the number of seeds inside the shishito pepper and the intensity of pungency of the fruit, and the gene expression control mechanism that causes the fluctuation of the pungency of the shishito fruit.

Corresponding author, Associate Professor Kenichi Matsushima of the Institute of Agriculture, Shinshu University states that the pungency of chili peppers with fewer seeds is more likely to fluctuate in pungency and that these pungency fluctuations are caused by the expression of multiple genes involved in capsaicinoid synthesis.

The research group investigated the pungent intensity of shishito fruits with a variety of number of seeds, with a tasting test and measurement of the capsaicinoid content. The placentation/partition (taiza/kakuheki) tissue in the fruit where capsaicinoids are synthesized was vertically divided into two equal parts, one was measured for pungent intensity and the other for the expression of genes involved in capsaicinoid synthesis. As a result, the spiciness of the shishito fruit with a large number of seeds was very weak, whereas the spiciness of the fruits with a small number of seeds ranged from weak to strong.

The group investigated the relationship between the intensity of pungency and the degree of gene function within the same fruit. As a result, among the genes involved in capsaicinoid synthesis, the expression levels of 10 genes showed a positive correlation with the pungent intensity, and it was found that the higher the expression level of these genes, the stronger the pungent taste. Therefore, it was clarified that in shishito peppers, the activation of these 10 genes increases the amount of capsaicinoids synthesized and enhances the pungent taste.

There have been many studies investigating how much the pungent intensity (capsaicinoid content) of peppers changes depending on the cultivation conditions, but few studies have investigated gene expression. In this study, the pungent fluctuation phenomenon of chili pepper was investigated at the gene expression level. The group clarified the relationship between the two by using a unique experimental method of simultaneously investigating pungent intensity and gene expression by using the placenta and septum of shishito in two equal parts.

In addition to the results of this research, this novel method can also considered to be important outcome for investigating the pungent fluctuation phenomenon in the future. Associate Professor Matsushima hopes to utilize the knowledge and information on the expression level of genes that have been found to be significantly involved in pungent fluctuations for future pungency breeding of chili peppers. It was revealed in this study that the pungent intensity of pepper and the expression level of multiple genes involved in capsaicinoid synthesis are closely related. Based on this result, if the expression level of these genes can be suppressed, it may be possible to grow vegetable varieties that are less likely to fluctuate in pungency. They are aiming for a variety of shishito that does not produce irregularly of spicy fruits, while retaining the unique flavor, which is different from the peppers that are not spicy at all. Therefore, the results of this research will be applied to pepper breeding, and the ultimate goal is to establish breeding technology for these genes and their functions.

INFORMATION:

Acknowledgement The authors thank Matsushima Sara for providing inspiration for the present research by her independent research.


[Attachments] See images for this press release:
Pungent-variable of sweet chili pepper Shishito: genes and seeds

ELSE PRESS RELEASES FROM THIS DATE:

UConn researcher finds 'Goldilocks problem' in child welfare decision-making

2021-03-09
When something bad happens to a child, the public and policy response is swift and forceful. How could this have happened? What went wrong? What do we do to make sure it never happens again? When a family becomes erroneously or unnecessarily enmeshed in the child welfare system, that burden is largely invisible - a burden borne mostly by the family itself. In both situations, the fault for the systemic failure is often placed on the caseworker - overburdened, under-resourced, and forced to make quick and critical judgments about the risk ...

Innovative flat optics will usher the next technological revolution and will touch all of us

Innovative flat optics will usher the next technological revolution and will touch all of us
2021-03-09
In a new paper published in Light Science & Application, the group led by Professor Andrea Fratalocchi from Primalight Laboratory of the Computer, Electrical and Mathematical Sciences and Engineering (CEMSE) Division, King Abdullah University of Science and Technology (KAUST), Saudi Arabia, introduced a new patented, scalable flat-optics technology manufactured with inexpensive semiconductors. The KAUST-designed technology leverages on a previously unrecognized aspect of optical nanoresonators, which are demonstrated to possess a physical layer that is completely equivalent to a feed-forward deep neural network. "What we have achieved," explains Fratalocchi, "is a ...

Combined technique using diamond probes for nanoscale imaging of magnetic vortex structure

Combined technique using diamond probes for nanoscale imaging of magnetic vortex structure
2021-03-09
Obtaining a precise understanding of magnetic structures is one of the main objectives of solid-state physics. Significant research is currently being undertaken in this field, the aim being to develop future data processing applications that use tiny magnetic structures as information carriers. Physicists at Johannes Gutenberg University Mainz (JGU) and the Helmholtz Institute Mainz (HIM) recently presented a new method for investigating magnetic structures combining two different techniques. This allows to measure and map the magnetization as well as the magnetic ...

Ice skating and permafrost

2021-03-09
For ice, so-called "surface melting" was postulated as early as the 19th century by Michael Faraday: Already below the actual melting point, i.e. 0 °C, a thin liquid film forms on the free surface because oft he interface between ice and air. Scientists led by Markus Mezger, group leader at the Max Planck Institute for Polymer Research (department of Hans-Jürgen Butt) and professor at the University of Vienna, have now studied this phenomenon in more detail at interfaces between ice and clay minerals. In nature, this effect is particularly interesting in permafrost soils - i.e. soils that are permanently frozen. About a quarter of the land area ...

'Big' step towards improved healthcare: new strategy makes big data analytics easier

Big step towards improved healthcare: new strategy makes big data analytics easier
2021-03-09
The efficient provision of medical care is integral to society. Over time, the healthcare industry has tapped into modern technology in order to keep up its quality of service. This has, unsurprisingly, led to huge volumes of patient data. But it's not just patients whose data need to be stored; doctors, physicians, clinical staff, and even smart wearable gadgets are contributing to what is coming to be known as "healthcare big data." Big data analytics (BDA), which involves the use of special design architectures to manage, store, and analyze complex data, is an important tool in healthcare. But it is hard to implement, owing to its high failure rate, resource-intensive process, and--most importantly--a lack of a clear guideline to aid practitioners. ...

Determining the structure of a molecule with laser-induced electron diffraction

Determining the structure of a molecule with laser-induced electron diffraction
2021-03-09
Light microscopes have revolutionized our understanding of the microcosmos, but their resolution is limited to about 100 nanometers. To see how molecules bond, break, or change their structure, we need at least 1000 times better resolution. Laser induced electron diffraction (LIED) is a technique which allows to pinpoint the individual atoms inside a single molecule, and to see where each atom moves when the molecule undergoes a reaction. This technique proved to be an amazing tool for the imaging molecules, such as water, carbonyl sulfide or carbon disulfide. However, using a strong laser field to generate the electron diffraction presented challenges in retrieving the exact structure, since the structural resolution depended on exact knowledge of the ...

Home testing for COVID-19 could prevent infections and reduce deaths at justifiable cost

2021-03-09
New Haven, Conn. -- Mailing a package of SARS-CoV-2 tests to every household in America and asking people to use them once a week could greatly reduce total infections and mortality at a justifiable cost, a new study led by the Yale School of Public Health finds. The research, published today in Annals of Internal Medicine, considers rapid antigen tests that warn people, in real-time, that they are potentially contagious and that they should isolate themselves before unknowingly spreading the disease to others. Investigators, led by Professor A. David Paltiel, assembled data on the epidemiology of SARS-CoV-2 and the natural history of COVID-19. They then used a mathematical model to estimate how many infections, hospitalizations, and deaths could be averted - and at what cost - by providing ...

School closures may have wiped out a year of academic progress for pupils in Global South

2021-03-09
As much as a year's worth of past academic progress made by disadvantaged children in the Global South may have been wiped out by school closures during the COVID-19 pandemic, researchers have calculated. The research, by academics from the University of Cambridge and RTI International, attempts to quantify the scale of learning loss that children from poor and marginalised communities in the Global South may have experienced, and the extent to which home support and access to learning resources could ameliorate it. While it is known that the education of these children has suffered disproportionately during the pandemic, it is much harder to measure exactly how much their academic progress has ...

Women with polycystic ovary syndrome at significantly increased risk of COVID-19

2021-03-09
Women with polycystic ovary syndrome (PCOS) are at a significantly increased risk of contracting COVID-19 than women without the condition, new research led by the University of Birmingham has revealed. Researchers are now calling for healthcare policy to specifically encourage women with PCOS to adhere to COVID-19 infection control measures while the global pandemic continues. Polycystic ovary syndrome (PCOS) is a common condition affecting around one in 10 women in the UK. The three main symptoms are irregular periods, high levels of "male" hormones which may cause physical signs such as excess facial or body hair, and a cystic appearance on an ultrasound or MRI scan of the ovaries which is caused by follicles becoming increasingly fluid filled as they fail to develop and ...

Making the role of AI in medicine explainable

Making the role of AI in medicine explainable
2021-03-09
Researchers at Charité - Universitätsmedizin Berlin and TU Berlin as well as the University of Oslo have developed a new tissue-section analysis system for diagnosing breast cancer based on artificial intelligence (AI). Two further developments make this system unique: For the first time, morphological, molecular and histological data are integrated in a single analysis. Secondly, the system provides a clarification of the AI decision process in the form of heatmaps. Pixel by pixel, these heatmaps show which visual information influenced the AI decision process and to what extent, thus enabling doctors to understand and assess the plausibility of the results of the AI analysis. This represents ...

LAST 30 PRESS RELEASES:

An eye-opening year of extreme weather and climate

Scientists engineer substrates hostile to bacteria but friendly to cells

New tablet shows promise for the control and elimination of intestinal worms

Project to redesign clinical trials for neurologic conditions for underserved populations funded with $2.9M grant to UTHealth Houston

Depression – discovering faster which treatment will work best for which individual

Breakthrough study reveals unexpected cause of winter ozone pollution

nTIDE January 2025 Jobs Report: Encouraging signs in disability employment: A slow but positive trajectory

Generative AI: Uncovering its environmental and social costs

Lower access to air conditioning may increase need for emergency care for wildfire smoke exposure

Dangerous bacterial biofilms have a natural enemy

Food study launched examining bone health of women 60 years and older

CDC awards $1.25M to engineers retooling mine production and safety

Using AI to uncover hospital patients’ long COVID care needs

$1.9M NIH grant will allow researchers to explore how copper kills bacteria

New fossil discovery sheds light on the early evolution of animal nervous systems

A battle of rafts: How molecular dynamics in CAR T cells explain their cancer-killing behavior

Study shows how plant roots access deeper soils in search of water

Study reveals cost differences between Medicare Advantage and traditional Medicare patients in cancer drugs

‘What is that?’ UCalgary scientists explain white patch that appears near northern lights

How many children use Tik Tok against the rules? Most, study finds

Scientists find out why aphasia patients lose the ability to talk about the past and future

Tickling the nerves: Why crime content is popular

Intelligent fight: AI enhances cervical cancer detection

Breakthrough study reveals the secrets behind cordierite’s anomalous thermal expansion

Patient-reported influence of sociopolitical issues on post-Dobbs vasectomy decisions

Radon exposure and gestational diabetes

EMBARGOED UNTIL 1600 GMT, FRIDAY 10 JANUARY 2025: Northumbria space physicist honoured by Royal Astronomical Society

Medicare rules may reduce prescription steering

Red light linked to lowered risk of blood clots

Menarini Group and Insilico Medicine enter a second exclusive global license agreement for an AI discovered preclinical asset targeting high unmet needs in oncology

[Press-News.org] Pungent-variable of sweet chili pepper Shishito: genes and seeds