Conformational equilibria in GPCRs provides critical clues about activation mechanisms
2021-03-19
(Press-News.org) A multinational research team led by Dr. Adnan Sljoka (RIKEN), Prof. R. Scott Prosser (Univ. of Toronto) with collaborations with Dr. Duy Phuoc Tran and Prof. Akio Kitao (Tokyo Tech) and Prof. Roger K. Sunahara (Univ. of California San Diego) has carried out experimental and computational studies, revealing key steps associated with the activation of the human adenosine A2A receptor (A2AR). A2AR is a member of superfamily of receptors called G protein-coupled receptors (GPCRs) (major drug targets) which engage the G protein and initiates cell signaling. The research team discovered that A2AR is represented by at least two inactive conformations and three active conformations whose populations are dependent on ligands and activation states of G protein, and that communication between receptor and G-protein is important for activation and signalling. This study is expected to allow researchers to reach new level of insight in GPCR activation and disease mechanism.
Background
GPCRs affect almost every aspect of human physiology, where 35% of all approved drugs act on GPCRs. In most cases, GPCRs are situated in the plasma membrane that surrounds the cell while the drug or ligand (such as hormones and neurotransmitters) that acts on the GPCR binds to an extracellular pocket. Activation is then transduced across the receptor, resulting in complexation with proteins on the cell interior. Since input arrives at the cell exterior and initiates signalling pathways inside the cell, this makes GPCRs useful in pharmacology as the drug in many cases need not enter the cell. However, GPCRs activations relate to dynamic events and key intermediate states that arise between the time that a ligand binds and when the G protein is activated. Capturing conformational dynamics of GPCRs and description of intermediate states and its role in activation and signalling has been a formidable challenge, which has hampered progress in understanding activation mechanisms of GPCRs.
Overview of Research Achievement
Using Fluorine-nuclear magnetic resonance (19F-NMR), mathematical rigidity theory, and molecular dynamics simulations, the international research team has discovered the key mechanism of activation of the human adenosine A2A receptor (A2AR) as it proceeds through signaling pathway. A2AR (also known as caffeine receptor as it is deactivated by caffeine) is a well-known GPCR that is distributed in the nervous system, platelets, immune cells, lungs, heart, and the vasculature. A2AR drugs have been developed to address wound healing, vascular diseases, including atherosclerosis, restenosis, and platelet activation, in addition to inflammation and cancer. Thus, understanding its functional states associated with receptor signaling can yield new opportunities in pharmacology and general understanding of GPCR activation mechanisms. The researchers focused on biasing key conformational states of A2AR by complexing it with G protein and different ligands to better understand signal transduction and receptor activation. F-NMR showed that A2AR is represented by at least two inactive conformations and three active conformations associated with signaling pathway whose populations are dependent on ligands engagement and G protein interactions (Fig2). Research team also used Molecular Dynamics simulations to create a structure of A2AR bound to heterotrimer G-protein complex (performed by Kitao lab), where rigidity theory methods of Sljoka identified an activation pathway where A2AR initiates communication with the G-protein which traverses the receptor's ligand binding site and G-protein (Fig3). Gβγ subunit was discovered to serve as a critical domain for facilitating signaling and activation. Understanding the activation mechanism and functional states of A2AR signaling may provide new opportunities for drug discovery.
Future Development
While the current study provides unprecedented resolution of key functional states associated with receptor signaling, future studies will no doubt focus on other key domains, providing a more comprehensive picture of the activation process.
INFORMATION:
About Tokyo Institute of Technology
Tokyo Tech stands at the forefront of research and higher education as the leading university for science and technology in Japan. Tokyo Tech researchers excel in fields ranging from materials science to biology, computer science, and physics. Founded in 1881, Tokyo Tech hosts over 10,000 undergraduate and graduate students per year, who develop into scientific leaders and some of the most sought-after engineers in industry. Embodying the Japanese philosophy of "monotsukuri," meaning "technical ingenuity and innovation," the Tokyo Tech community strives to contribute to society through high-impact research.
https://www.titech.ac.jp/english/
[Attachments] See images for this press release:
ELSE PRESS RELEASES FROM THIS DATE:
2021-03-19
A team of researchers has found disrupting the interaction between cancer cells and certain immune cells is more effective at killing cancer cells than current immunotherapy treatments.
The findings, which include studies in cell lines and animal models, appeared in JCI Insight and focus on END ...
2021-03-19
MOSCOW, RUSSIA -
Moscow Center for Diagnostics & Telemedicine and RADLogics shared the results of a large-scale study (Moscow Experiment on the Computer Vision for the Analysis of Medical Images - mosmed.ai, NCT04489992) conducted by the Research and Practical Clinical Center for Diagnostics and Telemedicine Technologies of the Moscow Health Care Department. The clinical research found that the introduction of RADLogics' AI-Powered solution into radiology workflow to analyze Chest-CT scans during the COVID-19 pandemic reduced report turnaround ...
2021-03-19
TROY, N.Y. -- A novel form of polymerized estrogen developed at Rensselaer Polytechnic Institute can provide neuroprotection when implanted at the site of a spinal cord injury -- preventing further damage. This promising result, found in a preclinical model, was recently published in ACS Chemical Neuroscience, and it lays the groundwork for further advancement of this new biomaterial.
"What we saw that gives us hope is more neuroprotection, meaning we saw more spared neurons and more spared axons in the tissue," said Ryan Gilbert, a professor of biomedical engineering at Rensselaer, and co-author on this paper. "We believe that the estrogen released from our biomaterial design is providing a neuroprotective response."
After a spinal cord injury, the body's inflammatory ...
2021-03-19
The results showed that several psychological well-being measures gradually increased within participants from the beginning to the end of the course. That was especially true for life satisfaction, perceived well-being, self-awareness and emotional self-regulation. The participants in the study also reported a significant decrease in anxiety, perceived stress, negative thoughts, rumination and anger tendencies. The researchers observed, simultaneously, improvements in the positive aspects and a reduction of negative emotions, both in the short term and longitudinally ...
2021-03-19
UNIVERSITY PARK, Pa. -- Stress is a universal human experience that almost everyone deals with from time to time. But a new study found that not only do some people report feeling no stress at all, but that there may be downsides to not experiencing stress.
The researchers found that people who reported experiencing no stressors were more likely to experience better daily well-being and fewer chronic health conditions. However, they were also more likely to have lower cognitive function, as well.
David M. Almeida, professor of human development and family studies at Penn State, said the study suggests that small, daily stressors could potentially benefit the brain, despite being an inconvenience.
"It's possible that experiencing stressors creates opportunities for you ...
2021-03-19
Three University of Colorado Cancer Center researchers are part of a team that recently published a paper offering new insight into how the immune system relates to cancer. Quentin Vicens, PhD, Jeffrey Kieft, PhD, and Beat Vögeli, PhD, are authors on the paper, which looks at how an enzyme called ADAR1 operates in pathways associated with cancer.
"In a cell, ADAR1 edits native RNA -- or self-RNA -- so that the cell recognizes it as its own. It's a key protection against autoimmune disorders," Kieft says. "But if a virus infects, viral RNA isn't edited by ADAR1, so the cell can recognize that and react. The cell knows it has foreign RNA, and it activates immune responses to fight off that infection."
For their paper published last month in the ...
2021-03-19
Nearly two-thirds of middle-aged and older adults in Canada report adverse childhood experiences
Hamilton, ON (Mar. 19, 20121) - New research from McMaster University has found that roughly three in every five Canadian adults aged 45 to 85 have been exposed to childhood abuse, neglect, intimate partner violence or other household adversity.
The research, which estimates the prevalence of a broad range of adverse childhood experiences, was published in CMAJ Open.
"Our research showed that adverse childhood experiences are highly prevalent in the Canadian population, with 62% of Canadian adults aged 45 to 85 reporting at least one exposure," said Divya Joshi, the study's lead author and a postdoctoral fellow in the Department ...
2021-03-19
In 1961, physicist Ugo Fano provided the first theoretical explanation to an anomalous asymmetry observed in the spectral profiles of noble gases. He put forth an impactful interpretation of this phenomenon, now called "Fano resonance," stating that if a discrete excited state of a system falls within the energy range of a continuum of other possible states, these two can interfere with each other and give rise to abnormal peaks and dips in the system's frequency response.
Though Fano resonance can occur in various physical systems, recent progress in metasurfaces and nanotechnology has drawn attention to this phenomenon as a potentially powerful tool in optics. ...
2021-03-19
The Research Group on Synthetic Biology for Biomedical Applications at Pompeu Fabra University in Barcelona, Spain, has designed a cellular device capable of computing by printing cells on paper. For the first time, they have developed a living device that could be used outside the laboratory without a specialist, and it could be produced on an industrial scale at low cost. The study is published in Nature Communications and was carried out by Sira Mogas-Díez, Eva Gonzalez-Flo and Javier Macía.
We currently have many electronic devices available to us such as computers and tablets whose computing power is highly efficient. But, despite their ...
2021-03-19
DALLAS, March 19, 2021 -- Mechanical removal of blood clots causing a stroke is increasing, yet racial differences in treatment persist, according to late-breaking science presented today at the American Stroke Association's International Stroke Conference 2021. The virtual meeting is March 17-19, 2021 and is a world premier meeting for researchers and clinicians dedicated to the science of stroke and brain health.
Mechanical clot-removal or endovascular therapy is a non-surgical treatment that uses tiny tubes, or catheters, to remove a blood clot. In 2015, several major clinical trials confirmed that endovascular therapy ...
LAST 30 PRESS RELEASES:
[Press-News.org] Conformational equilibria in GPCRs provides critical clues about activation mechanisms