PRESS-NEWS.org - Press Release Distribution
PRESS RELEASES DISTRIBUTION

Shining a healing light on the brain

Shining a healing light on the brain
2021-03-24
(Press-News.org) Scientists make pivotal discovery of method for wireless modulation of neurons with X-rays that could improve the lives of patients with brain disorders. The X-ray source only requires a machine like that found in a dentist's office.

Many people worldwide suffer from movement-related brain disorders. Epilepsy accounts for more than 50 million; essential tremor, 40 million; and Parkinson's disease, 10 million.

Relief for some brain disorder sufferers may one day be on the way in the form of a new treatment invented by researchers from the U.S. Department of Energy's (DOE) Argonne National Laboratory and four universities. The treatment is based on breakthroughs in both optics and genetics. It would be applicable to not only movement-related brain disorders, but also chronic depression and pain.

"Our high precision noninvasive approach could become routine with the use of a small X-ray machine, the kind commonly found in every dental office." -- Elena Rozhkova, a nanoscientist in Argonne's Center for Nanoscale Materials

This new treatment involves stimulation of neurons deep within the brain by means of injected nanoparticles that light up when exposed to X-rays (nanoscintillators) and would eliminate an invasive brain surgery currently in use. 

"Our high-precision noninvasive approach could become routine with the use of a small X-ray machine, the kind commonly found in every dental office," said Elena Rozhkova, a lead author and a nanoscientist in Argonne's Center for Nanoscale Materials (CNM), a DOE Office of Science User Facility.

Traditional deep brain stimulation requires an invasive neurosurgical procedure for disorders when conventional drug therapy is not an option. In the traditional procedure, approved by the U.S. Food and Drug Administration, surgeons implant a calibrated pulse generator under the skin (similar to a pacemaker). They then connect it with an insulated extension cord to electrodes inserted into a specific area of the brain to stimulate the surrounding neurons and regulate abnormal impulses.

"The Spanish-American scientist José Manuel Rodríguez Delgado famously demonstrated deep brain stimulation in a bullring in the 1960s," said Vassiliy Tsytsarev, a neurobiologist from the University of Maryland and a co-author of the study. "He brought a raging bull charging at him to a standstill by sending a radio signal to an implanted electrode."

About 15 years ago, scientists introduced a revolutionary neuromodulation technology, "optogenetics," which relies on genetic modification of specific neurons in the brain. These neurons create a light-sensitive ion channel in the brain and, thereby, fire in response to external laser light. This approach, however, requires very thin fiberoptic wires implanted in the brain and suffers from the limited penetration depth of the laser light through biological tissues.

The team's alternative optogenetics approach uses nanoscintillators injected in the brain, bypassing implantable electrodes or fiberoptic wires. Instead of lasers, they substitute X-rays because of their greater ability to pass through biological tissue barriers.

"The injected nanoparticles absorb the X-ray energy and convert it into red light, which has significantly greater penetration depth than blue light," said Zhaowei Chen, former CNM postdoctoral fellow.

"Thus, the nanoparticles serve as an internal light source that makes our method work without a wire or electrode," added Rozhkova. Since the team's approach can both stimulate and quell targeted small areas, Rozhkova noted, it has other applications than brain disorders. For example, it could be applicable to heart problems and other damaged muscles.    

One of the team's keys to success was the collaboration between two of the world-class facilities at Argonne: CNM and Argonne's Advanced Photon Source (APS), a DOE Office of Science User Facility. The work at these facilities began with the synthesis and multi-tool characterization of the nanoscintillators. In particular, the X-ray excited optical luminescence of the nanoparticle samples was determined at an APS beamline (20-BM). The results showed that the particles were extremely stable over months and upon repeated exposure to the high-intensity X-rays.

According to Zou Finfrock, a staff scientist at the APS 20-BM beamline and Canadian Light Source, "They kept glowing a beautiful orange-red light."

Next, Argonne sent CNM-prepared nanoscintillators to the University of Maryland for tests in mice. The team at University of Maryland performed these tests over two months with a small portable X-ray machine. The results proved that the procedure worked as planned. Mice whose brains had been genetically modified to react to red light responded to the X-ray pulses with brain waves recorded on an electroencephalogram.

Finally, the University of Maryland team sent the animal brains for characterization using X-ray fluorescence microscopy performed by Argonne scientists. This analysis was performed by Olga Antipova on the Microprobe beamline (2-ID-E) at APS and by Zhonghou Cai on the Hard X-ray Nanoprobe (26-ID) jointly operated by CNM and APS.

This multi-instrument arrangement made it possible to see tiny particles residing in the complex environment of the brain tissue with a super-resolution of dozens of nanometers. It also allowed visualizing neurons near and far from the injection site on a microscale. The results proved that the nanoscintillators are chemically and biologically stable. They do not wander from the injection site or degrade.

"Sample preparation is extremely important in these types of biological analysis," said Antipova, a physicist in the X-ray Science Division (XSD) at the APS. Antipova was assisted by Qiaoling Jin and Xueli Liu, who prepared brain sections only a few micrometers thick with jeweler-like accuracy.

"There is an intense level of commercial interest in optogenetics for medical applications," said Rozhkova. "Although still at the proof-of-concept stage, we predict our patent-pending wireless approach with small X-ray machines should have a bright future."

The related article "Wireless optogenetic modulation of cortical neurons enabled by radioluminescent nanoparticles" appeared in ACS Nano. In addition to Rozhkova, Chen, Finfrock, Antipova and Cai, another Argonne author is Rosemarie Wilton. University contributors include Vassiliy Tsytsarev, Dongyi Wang, Yi Liu, Brandon Gaitan, Yang Tao and Yu Chen from the University of Maryland, Department of Bioengineering; Hiroyuki Arakawa and Reha Erzurumlu from the University of Maryland School of Medicine; Fritz Lischka from the Uniformed Services University of the Health Sciences; Bryan Hooks from the University of Pittsburgh, Department of Neurobiology; and Huanghao Yang from Fuzhou University.

INFORMATION:

This research received support from the DOE Office of Science, National Institutes of Health and National Science Foundation.

About Argonne's Center for Nanoscale Materials
The Center for Nanoscale Materials is one of the five DOE Nanoscale Science Research Centers, premier national user facilities for interdisciplinary research at the nanoscale supported by the DOE Office of Science. Together the NSRCs comprise a suite of complementary facilities that provide researchers with state-of-the-art capabilities to fabricate, process, characterize and model nanoscale materials, and constitute the largest infrastructure investment of the National Nanotechnology Initiative. The NSRCs are located at DOE's Argonne, Brookhaven, Lawrence Berkeley, Oak Ridge, Sandia and Los Alamos National Laboratories. For more information about the DOE NSRCs, please visit https://science.osti.gov/User-Facilities/User-Facilities-at-a-Glance.

About the Advanced Photon Source

The U. S. Department of Energy Office of Science's Advanced Photon Source (APS) at Argonne National Laboratory is one of the world's most productive X-ray light source facilities. The APS provides high-brightness X-ray beams to a diverse community of researchers in materials science, chemistry, condensed matter physics, the life and environmental sciences, and applied research. These X-rays are ideally suited for explorations of materials and biological structures; elemental distribution; chemical, magnetic, electronic states; and a wide range of technologically important engineering systems from batteries to fuel injector sprays, all of which are the foundations of our nation's economic, technological, and physical well-being. Each year, more than 5,000 researchers use the APS to produce over 2,000 publications detailing impactful discoveries, and solve more vital biological protein structures than users of any other X-ray light source research facility. APS scientists and engineers innovate technology that is at the heart of advancing accelerator and light-source operations. This includes the insertion devices that produce extreme-brightness X-rays prized by researchers, lenses that focus the X-rays down to a few nanometers, instrumentation that maximizes the way the X-rays interact with samples being studied, and software that gathers and manages the massive quantity of data resulting from discovery research at the APS.

This research used resources of the Advanced Photon Source, a U.S. DOE Office of Science User Facility operated for the DOE Office of Science by Argonne National Laboratory under Contract No. DE-AC02-06CH11357.

Argonne National Laboratory seeks solutions to pressing national problems in science and technology. The nation's first national laboratory, Argonne conducts leading-edge basic and applied scientific research in virtually every scientific discipline. Argonne researchers work closely with researchers from hundreds of companies, universities, and federal, state and municipal agencies to help them solve their specific problems, advance America's scientific leadership and prepare the nation for a better future. With employees from more than 60 nations, Argonne is managed by UChicago Argonne, LLC for the U.S. Department of Energy's Office of Science.

The U.S. Department of Energy's Office of Science is the single largest supporter of basic research in the physical sciences in the United States and is working to address some of the most pressing challenges of our time. For more information, visit https://energy.gov/science.


[Attachments] See images for this press release:
Shining a healing light on the brain

ELSE PRESS RELEASES FROM THIS DATE:

Group testing method developed for COVID-19

Group testing method developed for COVID-19
2021-03-24
Researchers Mario Guarracino the HSE Laboratory of Algorithms and Technologies for Networks Analysis in Nizhny Novgorod and Julius ?ilinskas and Algirdas Lančinskas from Vilnius University, have proposed a new method of testing for COVID-19. This group method allows results to be obtained 13 times faster as compared to individual testing of each sample. The research paper was published in the journal Scientific Reports. The COVID-19 pandemic has already affected millions of people from over 200 countries. The rapid virus expansion demonstrated how fast such infections can spread in today's globalized world. At the beginning of the pandemic, when little was known about the virus and vaccines had not yet ...

Deadly heat waves will be common in South Asia, even at 1.5 degrees of warming

Deadly heat waves will be common in South Asia, even at 1.5 degrees of warming
2021-03-24
WASHINGTON--Residents of South Asia already periodically experience heat waves at the current level of warming. But a new study projecting the amount of heat stress residents of the region will experience in the future finds with 2 degrees Celsius of warming, the population's exposure to heat stress will nearly triple. Limiting warming to 1.5 degrees Celsius will likely reduce that impact by half, but deadly heat stress will become commonplace across South Asia, according to the new study in Geophysical Research Letters, AGU's journal publishing high-impact, short-format reports with immediate implications spanning all Earth and space sciences. With ...

Zooming in on muscle cells

2021-03-24
An old technique flexes its muscles Sarcomeres are small repeating subunits of myofibrils, the long cylinders that bundle together to make the muscle fibres. Inside the sarcomeres, filaments of the proteins myosin and actin interact to generate muscle contraction and relaxation. So far, traditional experimental approaches to investigate the structure and function of muscle tissue were performed on reconstructed protein complexes or suffered from low resolution. "Electron cryo-tomography, instead, allows us to obtain detailed and artefact-free 3D images of the frozen muscle", says Raunser. Cryo-ET was for a long time an established yet niche methodology. But recent technical advances in electron cryo-microscopy (cryo-EM) as well as the new development of ...

Decline in black cherry regeneration may herald wider forest change

Decline in black cherry regeneration may herald wider forest change
2021-03-24
In the heart of black cherry's native range, including a part of the Allegheny Hardwoods that bills itself as the "Black Cherry Capital of the World," the tree's regeneration, growth and survival have all been declining for more than a decade. In a new analysis, a team of USDA Forest Service and University of Missouri scientists identify likely factors behind the tree's decline and, more significantly, conclude that black cherry may be the tip of the iceberg in terms of change in eastern deciduous forests. Scientists used a combination of synthesis of existing research and new analyses to examine the leading hypotheses for black cherry's regeneration failure. They conclude that the two factors that are ...

Programs help shield Black youth from effects of racism

2021-03-24
Family-centered prevention programs that foster protective caregiving can buffer the negative effects of racial discrimination on young Black people, according to a study published by University of Georgia researchers. Research shows that Black youth exposed to various levels of racial discrimination--including slurs, threats and false accusations--are at a high risk for poor mental health outcomes such as hopelessness, conduct problems, drug use and depression. After participating in family-oriented programs, high school-age adolescents who encountered high levels of racial discrimination and received supportive caregiving evinced fewer increases in conduct problems and depression/anxiety symptoms two years later. "This research shows that ...

Reading between the diamonds

2021-03-24
The high temperatures and pressures of the Earth's mantle forge carbon-rich minerals known as carbonates into diamond. But less is known about the fate of carbonates that travel even deeper underground -- depths from which no sample has ever been recovered. Now, Michigan State University's Susannah Dorfman and her team are unearthing an answer with lab tools that mimic these extreme conditions. "What we were interested in is, when is carbon not diamond?" added Dorfman. In a paper recently published in Nature Communications, scientists in Dorfman's Experimental ...

Aerosol formation in clouds

Aerosol formation in clouds
2021-03-24
Researchers at the Paul Scherrer Institute PSI have studied for the first time how chemical reactions in clouds can influence the global climate. They found that isoprene, the dominant non-methane organic compound emitted into the atmosphere, can strongly contribute to the formation of organic aerosols in clouds. They published their results today in the journal Science Advances. Aerosols, a mixture of solid or liquid particles suspended in the air, play an important role in Earth's climate. Aerosols originate either from natural or human sources. They influence Earth's radiation balance by interacting with sunlight and forming clouds. However, their effect remains the single most significant uncertainty ...

New cancer immunotherapy recruits help from lymphatic vessels

2021-03-24
CHICAGO -- Immunotherapy, which recruits the body's own immune system to attack cancer, has given many cancer patients a new avenue to treat the disease. But many cancer immunotherapy treatments can be expensive, have devastating side effects, and only work in a fraction of patients. Researchers at the Pritzker School of Molecular Engineering at the University of Chicago have developed a new therapeutic vaccine that uses a patient's own tumor cells to train their immune system to find and kill cancer. The vaccine, which is injected into the skin just like a traditional vaccine, stopped ...

An overlooked strand of the Southern San Andreas Fault may pose a major earthquake risk

2021-03-24
Addressing uncertainties about where large earthquakes are most likely to occur along the southern San Andreas fault, which splits into multiple strands east of Los Angeles, a new study identifies a strand that has largely flown under the radar of public concern as the region's greatest earthquake threat. The study determines that the Mission Creek strand, which passes through major water and power infrastructure for the greater Los Angeles region, may account for almost the entire slip rate of this portion of the fault, suggesting it may actually be the primary Pacific-North American plate boundary fault at this latitude. The San Andreas fault threatens large future earthquakes, since its southernmost section has not ruptured in almost 300 years ...

Greenland caves: Time travel to a warm Arctic

Greenland caves: Time travel to a warm Arctic
2021-03-24
A 12-centimetre-thick sample of a deposit from a cave in the northeast of Greenland offers unique insights into the High Arctic's climate more than 500,000 years ago. The geologist and cave scientist Prof. Gina Moseley collected it during an exploratory expedition in 2015 for her palaeoclimatic research in one of the most sensitive areas of the world to climate change. The cave is located at 80° North 35 km from the coast and 60 km from the Greenland Ice Sheet margin. It was part of the Greenland Caves Project, funded by 59 different sponsors including the National Geographic Society. Moseley and her team are interested in the climate and environmental history captured by the unique cave deposit. "Mineral deposits formed ...

LAST 30 PRESS RELEASES:

Antarctica’s only native insect’s unique survival mechanism

How Earth's early cycles shaped the chemistry of life

Ukraine war forces planes to take longer routes, raising CO2

Negative refraction of light using atoms instead of metamaterials

High BP may develop at different ages and paces in East & South Asian adults in the UK

Meet the newly discovered brain cell that allows you to remember objects

Engineered animals show new way to fight mercury pollution

The 3,000-year coral reef shutdown: a mysterious pause and a remarkable recovery

Worm surface chemistry reveals secrets to their development and survival

Splicing twins: unravelling the secrets of the minor spliceosome complex

500-year-old Transylvanian diaries show how the Little Ice Age completely changed life and death in the region

Overcoming nicotine withdrawal: Clues found in neural mechanisms of the brain

Survey: Women prefer female doctors, but finding one for heart health can be difficult

Leaf color mysteries unveiled: the role of BoYgl-2 in cabbage

NUS Medicine study: Inability of cells to recycle fats can spell disease

D2-GCN: a graph convolutional network with dynamic disentanglement for node classification

Female hoverflies beat males on long-distance migrations

Study finds consumer openness to smoke-impacted wines, offering new market opportunities

Why we need to expand the search for climate-friendly microalgae

Fewer forest fires burn in North America today than in the past—and that's a bad thing

Older people in England are happier now than before the COVID pandemic, new national study suggests

Texas A&M chemist wins NSF CAREER Award

Micro-nano plastics make other pollutants more dangerous to plants and intestinal cells

Study of female genital tract reveals key findings

Pitt Engineering Professor Fang Peng elected to National Academy of Engineering

Short-course radiation therapy effective for endometrial cancer patients

Breast cancer treatment advances with light-activated ‘smart bomb’

JSCAI article at THT 2025 sets the standard for training pathways in interventional heart failure

Engineering biological reaction crucibles to rapidly produce proteins

Minecraft: a gamechanger for children’s learning

[Press-News.org] Shining a healing light on the brain