PRESS-NEWS.org - Press Release Distribution
PRESS RELEASES DISTRIBUTION

Toxin in potatoes evolved from a bitter-tasting compound in tomatoes

Toxin in potatoes evolved from a bitter-tasting compound in tomatoes
2021-03-25
(Press-News.org) A multi-institutional collaboration has revealed that α-solanine, a toxic compound found in potato plants, is a divergent of the bitter-tasting α-tomatine, which is found in tomato plants. The research group included Associate Professor MIZUTANI Masaharu and Researcher AKIYAMA Ryota et al. of Kobe University's Graduate School of Agricultural Science, Assistant Professor WATANABE Bunta of Kyoto University's Institute for Chemical Research, Senior Research Scientist UMEMOTO Naoyuki of the RIKEN Center for Sustainable Resource Science, and Professor MURANAKA Toshiya of Osaka University's Graduate School of Engineering.

It is hoped that these research results can be used in potato breeding as a basis for suppressing the synthetization of poisonous compounds.

These research results were published in the international academic journal 'Nature Communications' on February 26.

Main Points

α-solanine is a toxic steroidal glycoalkaloid (SGA) (*1) found in potatoes. Tomato's α-tomatine is astringent-tasting SGA that accumulates inside unripe fruits. Based on their chemical structures, SGAs can be divided into two general classes, solanidanes (*2, e.g.α-solanine) and spirosolanes (*3, e.g. α-tomatine). The research group revealed that the toxic α-solanine in potatoes is biosynthesized from spirosolane. They discovered that the dioxygenase DPS (*4) is the key enzyme for this catalytic conversion. It was also revealed that the α-solanine biosynthesis pathway in potatoes diverged from the spirosolane biosynthesis pathway due to the evolution of DPS. Research Background

α-solanine is a type of toxic steroidal glycoalkaloid (SGA), which accumulates in the green skin on potato tubers (*5) and in tuber sprouts. SGA is not only found in potatoes but also in other plants of the Solanaceae family, including crops like tomatoes and eggplants. These substances are poisonous to many living things and serve as one of the plants' natural defenses. Low concentrations of SGA in potatoes cause a bitter taste and larger amounts can cause food poisoning. For this reason, biosynthesis research has been conducted with the aim of controlling the accumulation of SGA in potatoes.

Based on their skeletal chemical structures, SGAs can be divided into two general classes, solanidanes and spirosolanes (Figure 1). The potato toxinα-solanine is an example of a solanidane, whereas α-tomatine, which accumulates inside unripe tomatoes, is a spirosolane. It is known that both classes of SGA are biosynthesized from cholesterol. Up until now, several genes that encode the catalytic enzymes in SGA biosynthesis have been discovered and potato and tomato plants share these enzymes in the common pathway of SGA biosynthesis. However, the steps and enzymes involved in the metabolic branch point between solanidane- skeleton and spirosolane-skeleton formation remains an unsolved mystery.

This research group showed that the potato toxinα-solanine is biosynthesized from spirosolane. In a world first, they discovered that the dioxygenase DPS is the key to this conversion.

Research Findings

Potatoes contain the toxic solanidanes α-solanine and α-chaconine. The research group investigated theα-solanine biosynthesis pathway in potato plants. Using genome editing, they disrupted the biosynthetic enzyme gene in potato so that it was unable to produceα-solanine. Feeding α-tomatine (a spirosolane found in tomatoes) to the disruptant resulted in a metabolic conversion to the corresponding solanidane compound. In addition, it was found that this metabolic alteration could be suppressed with a 2-oxoglutarate dependent dioxygenase inhibitor, revealing that a dioxygenase is responsible for the oxidation reaction that synthesizes solanidanes from spirosolanes.

The researchers singled out a 2-oxoglutarate dependent dioxygenase (DPS) gene that was expressed in potato during α-solanine synthesis. To investigate this further, the researchers generated modified plants in which DPS gene expression was suppressed via RNA interference (*7). The solanidane concentrations in these modified potato plants were far lower than in the unmodified group, and spirosolanes accumulated inside the plants in place of solanidanes. Next, the researchers measured the enzymatic activity of DPS by recombining the proteins and expressing them in E. coli. The results revealed the unique catalytic role of DPS in spirosolane's conversion into solanidane (Figure 2). This proved that DPS is the key enzyme responsible for this conversion.

This research revealed that the potato's ability to produce α-solanine came about due to the evolution of DPS, which is responsible for metabolically converting spirosolanes (e.g. α-tomatine) into solanidanes. It is known that tomatoes also have an enzyme for metabolizing spirosolanes. The bitter-tasting α-tomatine is found in unripe tomatoes but is metabolized into the tasteless, non-toxic esculeoside A as the fruits ripen. The catalyst for this reaction is 23DOX (*8), which is also a dioxygenase.

From the relationship between their chromosomal positions and phylogenetic analysis, it was revealed that the α-solanine biosynthase DPS has evolved from the same precursor gene as the non-toxic α-tomatine's catalytic enzyme 23DOX. Thus, it is believed that the evolution of the dioxygenase gene that metabolizes spirosolanes is one of the main drivers of the development of structural and functional variation in SGAs.

Further Developments

Potatoes have been termed a potentially dangerous food because large concentrations of toxic α-solanine can cause food poisoning. It is hoped that these research results can provide a basis for future potato varieties in which the biosynthesis of toxic compounds is suppressed by targeting the DPS gene.

As shown in this research, the evolutionary origins of the structural diversity of SGAs provide clues towards discovering unknown SGA synthesis enzymes involved in biological functions in various plants. Illuminating these functions could pave the way for the molecular breeding of plant varieties that are able to adapt to different stressful environments.

INFORMATION:

Glossary

1. Steroidal Glycoalkaloid (SGA): An SGA consists of alkaloids containing nitrogen atoms arranged in a skeletal steroid structure. It is a toxic alkaloid glycoside with an oligosaccharide attached to the hydroxyl group at position C3 of the steroid. SGAs are secondary metabolites that accumulate in plants of the Solanaceae family. The SGAs α-solanine and α-chaconine are found in potatoes and are known to cause food poisoning.

2. Solanidanes: The skeletal steroid structure of some SGA chemical compounds, such as α-solanine in potatoes.

3. Spirosolanes: The skeletal steroid structure of some SGA chemical compounds, such as α-tomatine in tomatoes.

4. DPS: DPS stands for Dioxygenase for Potato Solanidane synthesis. It is the key enzyme for the biosynthesis ofα-solanine in potatoes. DPS is the catalytic enzyme for the metabolic alteration of spirosolane to solanidane by C-16 hydroxylation.

5. Tuber: An enlarged underground structure in some plant species that stores nutrients. Plants with edible tubers include potato, konnyaku and Jerusalem artichoke.

6. 2-oxoglutarate dependent dioxygenase: 2-oxoglutarate dependent dioxygenases are a super family of enzymes that are water-soluble and play various roles in many biological processes. They require 2-oxoglutarate (α-ketoglutarate) and O2 to hydrate substrates.

7. RNA interference: RNA interference is a phenomenon where an antisense RNA strand, which is complimentary to a specific gene's mRNA, and a sense RNA strand become a double-stranded RNA, suppressing the expression of the gene. This knowledge forms the basis of a method to control the expression of target genes in experiments.

8. 23DOX: This enzyme hydrolyzes spirosolane at C-23. It is part of the 2-oxoglutarate dependent dioxygenase super family of enzymes. In tomato plants, it hydrolyzes the bitter-tasting SGA α-tomatine at C-23.

Acknowledgements

This research was partially funded by the following:

A Grant-in-Aid for JSPS Fellows for the research project entitled 'The chemical evolution of steroidal glycoalkaloids in Solanaceae' (grant number JP19J10750, recipient: Akiyama Ryota). The Japanese Ministry of Agriculture, Forestry and Fisheries' 'Development of new varieties and breeding materials in crops by genome editing' program for advancing research. The Cross-ministerial Strategic Innovation Promotion (SIP) Program. Journal Information:

Title: "The biosynthetic pathway of potato solanidanes diverged from that of spirosolanes due to evolution of a dioxygenase" DOI: 10.1038/s41467-021-21546-0

Authors: Ryota Akiyama1, Bunta Watanabe2, Masaru Nakayasu1†, Hyoung Jae Lee1, Junpei Kato1, Naoyuki Umemoto3, Toshiya Muranaka4, Kazuki Saito3,5, Yukihiro Sugimoto1, Masaharu Mizutani1

1. Graduate School of Agricultural Science, Kobe University. 2. Institute for Chemical Research, Kyoto University. 3. RIKEN Center for Sustainable Resource Science. 4. Department of Biotechnology, Graduate School of Engineering, Osaka University. 5. Graduate School of Pharmaceutical Sciences, Chiba University. †Currently a graduate student at the Research Institute for Sustainable Humanosphere, Kyoto University.

Journal: Nature Communications


[Attachments] See images for this press release:
Toxin in potatoes evolved from a bitter-tasting compound in tomatoes

ELSE PRESS RELEASES FROM THIS DATE:

Researchers discover new organic conductor

Researchers discover new organic conductor
2021-03-25
Salts are far more complicated than the food seasoning - they can even act as electrical conductors, shuttling current through systems. Extremely well studied and understood, the electrical properties of salts were first theorized in 1834. Now, nearly 200 years later, researchers based in Japan have uncovered a new kind of salt. The results were published on March 17 in Inorganic Chemistry, a journal of the American Chemical Society. The researchers were specifically investigating how one-dimensional versions of three-dimensional substances exhibit unique physical phenomena and functionality in a process called the ...

New insights into close encounters between albatross and fishing vessels

New insights into close encounters between albatross and fishing vessels
2021-03-25
CORVALLIS, Ore. - A novel analysis of encounters between albatross and commercial fishing vessels across the North Pacific Ocean is giving researchers important new understanding about seabird-vessel interactions that could help reduce harmful encounters. The new research method, which combines location data from GPS-tagged albatross and commercial fishing vessels, allows researchers to accurately identify bird-vessel encounters and better understand bird behavior, environmental conditions and the characteristics that influence these encounters. "It is hard to conceptualize how often birds ...

Arctic sponge survival in the extreme deep-sea

Arctic sponge survival in the extreme deep-sea
2021-03-25
For the first time, researchers from the SponGES project collected year-round video footage and hydrodynamic data from the mysterious world of a deep-sea sponge ground in the Arctic. Deep-sea sponge grounds are often compared to the rich ecosystems of coral reefs and form true oases. In a world where all light has disappeared and without obvious food sources, they provide a habitat for other invertebrates and a refuge for fish in the otherwise barren landscape. It is still puzzling how these biodiversity hotspots survive in this extreme environment as deep as 1500 metres below the water surface. With over 700 hundred ...

Gearing up nanoscale machines

Gearing up nanoscale machines
2021-03-25
Ikoma, Japan - Gear trains have been used for centuries to translate changes in gear rotational speed into changes in rotational force. Cars, drills, and basically anything that has spinning parts use them. Molecular-scale gears are a much more recent invention that could use light or a chemical stimulus to initiate gear rotation. Researchers at Nara Institute of Science and Technology (NAIST), Japan, in partnership with research teams at University Paul Sabatier, France, report in a new study published in Chemical Science a means to visualize snapshots of an ultrasmall ...

Better postoperative recovery for physically active

Better postoperative recovery for physically active
2021-03-25
People who are physically active on a regular basis recover better after surgery for colorectal cancer. However, starting to exercise only after the diagnosis is a fact had no effect on recovery, a University of Gothenburg thesis shows. In working on his thesis, Aron Onerup, who obtained his doctorate in surgery at the University's Sahlgrenska Academy and is now a specialist doctor at Sahlgrenska University Hospital, carried out an observational study of 115 patients diagnosed with colorectal cancer. The participants who had been physically inactive proved, three weeks after their surgery, to be at higher risk of not feeling that they ...

How tiny machines become capable of learning

How tiny machines become capable of learning
2021-03-25
Microswimmers are artificial, self-propelled, microscopic particles. They are capable of directional motion in a solution. The Molecular Nanophotonics Group at Leipzig University has developed special particles that are smaller than one-thirtieth of the diameter of a hair. They can change their direction of motion by heating tiny gold particles on their surface and converting this energy into motion. "However, these miniaturised machines cannot take in and learn information like their living counterparts. To achieve this, we control the microswimmers externally so that they learn to navigate in a virtual environment through what is known as reinforcement learning," said Cichos. With the help of virtual rewards, the microswimmers find their way through the liquid ...

NTU Singapore scientists develop antibacterial gel bandage using durian husk

NTU Singapore scientists develop antibacterial gel bandage using durian husk
2021-03-25
Food scientists from Nanyang Technological University, Singapore (NTU Singapore) have made an antibacterial gel bandage using the discarded husks of the popular tropical fruit, durian. Known as the "King of Fruits" in Southeast Asia, the durian has a thick husk with spiky thorns which is discarded, while the sweet flesh surrounding the seeds on the inside is considered a delicacy. By extracting high-quality cellulose from the durian husks and combining it with glycerol - a waste by-product from the biodiesel and soap industry - NTU scientists created a soft gel, similar to silicon sheets, which can be cut into bandages of various shapes and sizes. They then added the organic molecules produced from baker's yeast known as natural yeast phenolics, making the bandage deadly ...

How improving acoustic monitoring of bats could help protecting biodiversity

How improving acoustic monitoring of bats could help protecting biodiversity
2021-03-25
In order to assess the risk of bats dying at wind turbines, it is common practice to record the acoustic activity of bats within the operating range of the rotor blades. For this purpose, ultrasonic detectors are attached to the nacelles of the mast top. In a recent analysis, a team of scientists led by the Leibniz Institute for Zoo and Wildlife Research (Leibniz-IZW) concludes that the effectiveness of this acoustic monitoring is insufficient to reliably predict mortality risk, especially for bats at large turbines. They therefore recommend installing supplementary ultrasonic detectors at other locations on the wind turbines and developing additional techniques such as radar and thermal imaging cameras for monitoring. The results of their analysis are published in ...

Insufficient financial reporting may lead to underestimation of environmental liabilities

2021-03-25
European listed companies in the energy and mining sector provide, to say the least, sparse information on future environmental costs in their annual reports. Researchers believe that stricter guidelines are required as the lack of information may lead to underestimation of environmental liabilities, resulting in that future generations may have to bear the burden of cleanup costs. "I believe that the future environmental liabilities such as decommissioning costs are often underestimated and few understand the burden these costs might impose on future generations. If, for example, an oil & gas company fails, it costs an incredible amount to clean up after old oil wells and the risk is great that the taxpayers will have to pay the bill. Therefore, it is important that environmental obligations ...

Relieve your stress, relieve your allergies

2021-03-25
Increased allergic reactions may be tied to the corticotropin-releasing stress hormone (CRH), suggests a study published this month in the International Journal of Molecular Sciences. These findings may help clarify the mechanism by which CRH induces proliferation of mast cells (MC) - agents involved in the development of allergies in the human nasal cavity. "In my daily practice, I meet many patients with allergies who say their symptoms worsened due to psychological stress," states lead researcher Mika Yamanaka-Takaichi, a graduate student of the Department of Dermatology, Osaka City University, "This is what led me to do this research." Together with Professor Daisuke Tsuruta of the same department, they hypothesized that due to its ...

LAST 30 PRESS RELEASES:

Scientists engineer substrates hostile to bacteria but friendly to cells

New tablet shows promise for the control and elimination of intestinal worms

Project to redesign clinical trials for neurologic conditions for underserved populations funded with $2.9M grant to UTHealth Houston

Depression – discovering faster which treatment will work best for which individual

Breakthrough study reveals unexpected cause of winter ozone pollution

nTIDE January 2025 Jobs Report: Encouraging signs in disability employment: A slow but positive trajectory

Generative AI: Uncovering its environmental and social costs

Lower access to air conditioning may increase need for emergency care for wildfire smoke exposure

Dangerous bacterial biofilms have a natural enemy

Food study launched examining bone health of women 60 years and older

CDC awards $1.25M to engineers retooling mine production and safety

Using AI to uncover hospital patients’ long COVID care needs

$1.9M NIH grant will allow researchers to explore how copper kills bacteria

New fossil discovery sheds light on the early evolution of animal nervous systems

A battle of rafts: How molecular dynamics in CAR T cells explain their cancer-killing behavior

Study shows how plant roots access deeper soils in search of water

Study reveals cost differences between Medicare Advantage and traditional Medicare patients in cancer drugs

‘What is that?’ UCalgary scientists explain white patch that appears near northern lights

How many children use Tik Tok against the rules? Most, study finds

Scientists find out why aphasia patients lose the ability to talk about the past and future

Tickling the nerves: Why crime content is popular

Intelligent fight: AI enhances cervical cancer detection

Breakthrough study reveals the secrets behind cordierite’s anomalous thermal expansion

Patient-reported influence of sociopolitical issues on post-Dobbs vasectomy decisions

Radon exposure and gestational diabetes

EMBARGOED UNTIL 1600 GMT, FRIDAY 10 JANUARY 2025: Northumbria space physicist honoured by Royal Astronomical Society

Medicare rules may reduce prescription steering

Red light linked to lowered risk of blood clots

Menarini Group and Insilico Medicine enter a second exclusive global license agreement for an AI discovered preclinical asset targeting high unmet needs in oncology

Climate fee on food could effectively cut greenhouse gas emissions in agriculture while ensuring a social balance

[Press-News.org] Toxin in potatoes evolved from a bitter-tasting compound in tomatoes