Scientists use nanotechnology to detect bone-healing stem cells
2021-03-29
(Press-News.org) Researchers at the University of Southampton have developed a new way of using nanomaterials to identify and enrich skeletal stem cells - a discovery which could eventually lead to new treatments for major bone fractures and the repair of lost or damaged bone.
Working together, a team of physicists, chemists and tissue engineering experts used specially designed gold nanoparticles to 'seek out' specific human bone stem cells - creating a fluorescent glow to reveal their presence among other types of cells and allow them to be isolated or 'enriched'.
The researchers concluded their new technique is simpler and quicker than other methods and up to 50-500 times more effective at enriching stem cells.
The study, led by Professor of Musculoskeletal Science, Richard Oreffo and Professor Antonios Kanaras of the Quantum, Light and Matter Group in the School of Physics and Astronomy, is published in ACS Nano - an internationally recognised multidisciplinary journal.
In laboratory tests, the researchers used gold nanoparticles - tiny spherical particles made up of thousands of gold atoms - coated with oligonucleotides (strands of DNA), to optically detect the specific messenger RNA (mRNA) signatures of skeletal stem cells in bone marrow. When detection takes place, the nanoparticles release a fluorescent dye, making the stem cells distinguishable from other surrounding cells, under microscopic observation. The stem cells can then be separated using a sophisticated fluorescence cell sorting process.
Stem cells are cells that are not yet specialised and can develop to perform different functions. Identifying skeletal stems cells allows scientists to grow these cells in defined conditions to enable the growth and formation of bone and cartilage tissue - for example, to help mend broken bones.
Among the challenges posed by our ageing population is the need for novel and cost-effective approaches to bone repair. With one in three women and one in five men at risk of osteoporotic fractures worldwide, the costs are significant, with bone fractures alone costing the European economy €17 billion and the US economy $20 billion annually.
Within the University of Southampton's Bone and Joint Research Group, Professor Richard Oreffo and his team have been looking at bone stem cell based therapies for over 15 years to understand bone tissue development and to generate bone and cartilage. Over the same time-period, Professor Antonios Kanaras and his colleagues in the Quantum, Light and Matter Group have been designing novel nanomaterials and studying their applications in the fields of biomedical sciences and energy. This latest study effectively brings these disciplines together and is an exemplar of the impact collaborative, interdisciplinary working can bring.
Professor Oreffo said: "Skeletal stem cell based therapies offer some of the most exciting and promising areas for bone disease treatment and bone regenerative medicine for an aging population. The current studies have harnessed unique DNA sequences from targets we believe would enrich the skeletal stem cell and, using Fluorescence Activated Cell Sorting (FACS) we have been able to enrich bone stem cells from patients. Identification of unique markers is the holy grail in bone stem cell biology and, while we still have some way to go; these studies offer a step change in our ability to target and identify human bone stem cells and the exciting therapeutic potential therein."
Professor Oreffo added: "Importantly, these studies show the advantages of interdisciplinary research to address a challenging problem with state of the art molecular/cell biology combined with nanomaterials' chemistry platform technologies."
Professor Kanaras said: "The appropriate design of materials is essential for their application in complex systems. Customizing the chemistry of nanoparticles we are able to program specific functions in their design.
"In this research project, we designed nanoparticles coated with short sequences of DNA, which are able to sense HSPA8 mRNA and Runx2 mRNA in skeletal stem cells and together with advanced FACS gating strategies, to enable the assortment of the relevant cells from human bone marrow.
"An important aspect of the nanomaterial design involves strategies to regulate the density of oligonucleotides on the surface of the nanoparticles, which help to avoid DNA enzymatic degradation in cells. Fluorescent reporters on the oligonucleotides enable us to observe the status of the nanoparticles at different stages of the experiment, ensuring the quality of the endocellular sensor."
Both lead researchers also recognise that the accomplishments were possible due to the work of all the experienced research fellows and PhD students involved in this research as well as collaboration with Professor Tom Brown and Dr Afaf E-Sagheer of the University of Oxford, who synthesised a large variety of functional oligonucleotides.
The scientists are currently applying single cell RNA sequencing to the platform technology developed with partners in Oxford and the Institute for Life Sciences (IfLS) at Southampton to further refine and enrich bone stem cells and assess functionality. The team propose to then move to clinical application with preclinical bone formation studies to generate proof of concept studies.
INFORMATION:
The work has been possible through a BBSRC project grant to Professor Oreffo and Professor Kanaras.
Ends
Notes to Editors
1) For more information and interview requests contact Peter Franklin, Media Relations, University of Southampton. Tel. 07748 321087 Email. p.franklin@southampton.ac.uk.
2) The paper Enrichment of Skeletal Stem Cells from Human Bone Marrow Using Spherical Nucleic Acids is published in the journal ACS Nano (DOI: 10.1021/acsnano.0c10683) and can be found at: https://pubs.acs.org/doi/10.1021/acsnano.0c10683.
3) For more on the Quantum, Light and Matter Group at the University of Southampton, visit: https://www.qlm.soton.ac.uk/.
4) More on bone and joint research at the University of Southampton can be found at: https://www.southampton.ac.uk/medicine/research/themes/old_research_themes/bone_and_joint.page.
5) The University of Southampton drives original thinking, turns knowledge into action and impact, and creates solutions to the world's challenges. We are among the top 100 institutions globally (QS World University Rankings 2021). Our academics are leaders in their fields, forging links with high-profile international businesses and organisations, and inspiring a 22,000-strong community of exceptional students, from over 135 countries worldwide. Through our high-quality education, the University helps students on a journey of discovery to realise their potential and join our global network of over 200,000 alumni. http://www.southampton.ac.uk
ELSE PRESS RELEASES FROM THIS DATE:
2021-03-29
The vast majority of the world's largest meat and dairy companies have not made an explicit commitment to achieving net-zero emissions by 2050, finds a new analysis by researchers at New York University.
The study, which appears in the journal Climatic Change, examines the climate impacts of the biggest 35 largest meat and dairy companies around the globe as well as their influence in shaping political responses to climate change.
It is the first peer-reviewed study to assess climate responsibilities of the largest meat and dairy companies.
"Large meat and dairy companies are not doing enough to tackle climate change, and countries are not doing enough in terms of holding them accountable," says Jennifer ...
2021-03-29
Research into the flower preferences of pollinating moths may have delivered a vital clue to the simple factors needed for the emergence of new species.
Strong coevolutionary relationships between plants and animal pollinators have long been recognised as a potential driver of high rates of speciation in the 275,000 extant flowering plants.
Shifts between pollinators, such as bumblebees, hummingbirds, hawkmoths and bats, often coincide with plant speciation events.
Each of these pollinator "guilds" is attracted by a different set of floral traits such as colour, patterns, scent, shape, and nectar reward, collectively known as a pollination ...
2021-03-29
UNIVERSITY PARK, Pa. -- Why do some people with cold sores around their lips experience painful lesions, while others have no symptoms at all, yet still spread the virus? A new study conducted at Penn State finds that these differences could be due to variations in the way certain strains of herpes simplex (HSV-1) -- the virus that causes cold sores, as well as genital herpes -- activate gene expression in neurons.
"HSV-1 occurs in more than half the global population," said Moriah Szpara, associate professor of biology and biochemistry and molecular biology. "Not only does it cause recurrent problems, such as cold sores ...
2021-03-29
Transition metal perovskites oxides exhibit several desirable properties, including high-temperature superconductivity and electrocatalysis. Now, scientists at Tokyo Institute of Technology explore the structure and properties of a perovskite oxide, PbFeO3, in anticipation of the unusual charge distribution and exotic magnetic transitions displayed by such systems. They report two of the magnetic transitions, with a distinctive transition above room temperature and look into its causes, opening doors to potential applications in realizing new spintronic devices.
The advent of electronics has revolutionized our lives to an extent where it is impossible to imagine going about our day without relying on an electronic device in some form. What is even more remarkable, ...
2021-03-29
In a new publication from Cardiovascular Innovations and Applications; DOI https://doi.org/10.15212/CVIA.2021.0008, Zeyi Cheng, Miaomiao Qi, Chengyuan Zhang and Yanxia Mao from Sichuan University, Sichuan, China, Second Hospital of Lanzhou University, Lanzhou, China and The Second Medical School of Lanzhou University, Lanzhou, China consider myocardial fibrosis in the pathogenesis, diagnosis, and treatment of hypertrophic cardiomyopathy.
The authors review the application of myocardial fibrosis in the diagnosis and treatment of HCM, focusing on research progress and the application ...
2021-03-29
In a new publication from Cardiovascular Innovations and Applications; DOI https://doi.org/10.15212/CVIA.2021.0007, Sharen Lee and Gary Tse from Laboratory of Cardiovascular Physiology, Hong Kong, HKG, China, Second Hospital of Tianjin Medical University, Tianjin, China and Xiamen Cardiovascular Hospital, Xiamen, China consider a case of atezolizumab-induced autoimmune diabetes mellitus presenting with diabetic ketoacidosis.
Atezolizumab, an immune checkpoint inhibitor, is a humanized monoclonal, anti-programmed death ligand 1 (PD-L1) antibody used for the treatment of metastatic urothelial carcinoma that has progressed after chemotherapy. PD-L1 inhibitors can induce type 1 diabetes, and patients can present with diabetic ketoacidosis. ...
2021-03-29
In a new publication from Cardiovascular Innovations and Applications; DOI https://doi.org/10.15212/CVIA.2021.0006, Li Jingxiu, Zhang Fujun, Wei Xijin and Peng Ding from Anhui Provincial Hospital, Hefei, China, Chizhou Second People's Hospital, Chizhou, China, The Affiliated Hospital of Shandong University of TCM, Jinan, China and The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan, China consider using three-dimensional Lorenz Scatter Plots to detect patients with atrioventricular node double path caused by interpolated ventricular premature systoles.
A series of related electrophysiology ...
2021-03-29
In a new publication from Cardiovascular Innovations and Applications; DOI https://doi.org/10.15212/CVIA.2021.0005, Nikhil H. Shah, Steven J. Ross, Steve A. Noutong Njapo, Justin Merritt, Andrew Kolarich, Michael Kaufmann, William M. Miles, David E. Winchester, Thomas A. Burkart, and Matthew McKillop from UF Division of Cardiovascular Medicine, Gainesville, FL, USA, UVA Division of Cardiovascular Medicine, Charlottesville, VA, USA, The Johns Hopkins Hospital Department of Radiology, Baltimore, MD, USA, The Heart Center, Huntsville, AL, USA, Intermountain Medical Center, St. George, UT, USA and Carolina Cardiology Consultants, Greenville, SC, USA consider appropriate use of implantable ...
2021-03-29
In a new publication from Cardiovascular Innovations and Applications; DOI https://doi.org/10.15212/CVIA.2021.0001, Zesen Han, Lihong Lai, Zhaokun Pu and Lan Yang from The People's Hospital of Hua County, Henan, China and Henan University of Science and Technology, Henan, China consider the use of nomograms to predict patients with obstructive coronary artery disease.
The authors developed and validated clinical prediction models for the development of a nomogram to estimate the probability of patients having coronary artery disease (CAD).
An individualized clinical prediction model for patients with CAD allowed an accurate estimation in Chinese populations. The Akaike information criterion is a better method in screening risk factors. The ...
2021-03-29
In a new publication from Cardiovascular Innovations and Applications; DOI https://doi.org/10.15212/CVIA.2021.0002, Pei Huang, Yi Zhang, Yi Tang, Qinghua Fu, Zhaofen Zheng, Xiaoyan Yang, Yingli Yu from The First Affiliated Hospital of Hunan Normal University) Chang Sha, China and Tianjin University of Traditional Chinese Medicine, Tianjin, China consider the study of the left atrial function index in cardiovascular disease.
Some studies have shown that left ventricular structure and function play an important role in the risk stratification and prognosis of cardiovascular disease. The clinical application of left atrial function in cardiovascular disease has gradually attracted attention in the cardiovascular field.
There are ...
LAST 30 PRESS RELEASES:
[Press-News.org] Scientists use nanotechnology to detect bone-healing stem cells