(Press-News.org) Using complementary computing calculations and neutron scattering techniques, researchers from the Department of Energy's Oak Ridge and Lawrence Berkeley national laboratories and the University of California, Berkeley, discovered the existence of an elusive type of spin dynamics in a quantum mechanical system.
The team successfully simulated and measured how magnetic particles called spins can exhibit a type of motion known as Kardar-Parisi-Zhang, or KPZ, in solid materials at various temperatures. Until now, scientists had not found evidence of this particular phenomenon outside of soft matter and other classical materials.
These findings, which were published in Nature Physics, show that the KPZ scenario accurately describes the changes in time of spin chains -- linear channels of spins that interact with one another but largely ignore the surrounding environment -- in certain quantum materials, confirming a previously unproven hypothesis.
"Seeing this kind of behavior was surprising, because this is one of the oldest problems in the quantum physics community, and spin chains are one of the key foundations of quantum mechanics," said Alan Tennant, who leads a project on quantum magnets at the Quantum Science Center, or QSC, headquartered at ORNL.
Observing this unconventional behavior provided the team with insights into the nuances of fluid properties and other underlying features of quantum systems that could eventually be harnessed for various applications. A better understanding of this phenomenon could inform the improvement of heat transport capabilities using spin chains or facilitate future efforts in the field of spintronics, which saves energy and reduces noise that can disrupt quantum processes by manipulating a material's spin instead of its charge.
Typically, spins proceed from place to place through either ballistic transport, in which they travel freely through space, or diffusive transport, in which they bounce randomly off impurities in the material - or each other - and slowly spread out.
But fluid spins are unpredictable, sometimes displaying unusual hydrodynamical properties, such as KPZ dynamics, an intermediate category between the two standard forms of spin transport. In this case, special quasiparticles roam randomly throughout a material and affect every other particle they touch.
"The idea of KPZ is that, if you look at how the interface between two materials evolves over time, you see a certain kind of scaling akin to a growing pile of sand or snow, like a form of real-world Tetris where shapes build on each other unevenly instead of filling in the gaps," said Joel Moore, a professor at UC Berkeley, senior faculty scientist at LBNL and chief scientist of the QSC.
Another everyday example of KPZ dynamics in action is the mark left on a table, coaster or other household surface by a hot cup of coffee. The shape of the coffee particles affects how they diffuse. Round particles pile up at the edge as the water evaporates, forming a ring-shaped stain. However, oval particles exhibit KPZ dynamics and prevent this movement by jamming together like Tetris blocks, resulting in a filled in circle.
KPZ behavior can be categorized as a universality class, meaning that it describes the commonalities between these seemingly unrelated systems based on the mathematical similarities of their structures in accordance with the KPZ equation, regardless of the microscopic details that make them unique.
To prepare for their experiment, the researchers first completed simulations with resources from ORNL's Compute and Data Environment for Science, as well as LBNL's Lawrencium computational cluster and the National Energy Research Scientific Computing Center, a DOE Office of Science user facility located at LBNL. Using the Heisenberg model of isotropic spins, they simulated the KPZ dynamics demonstrated by a single 1D spin chain within potassium copper fluoride.
"This material has been studied for almost 50 years because of its 1D behavior, and we chose to focus on it because previous theoretical simulations showed that this setting was likely to yield KPZ hydrodynamics," said Allen Scheie, a postdoctoral research associate at ORNL.
The team then used the SEQUOIA spectrometer at the Spallation Neutron Source, a DOE Office of Science user facility located at ORNL, to examine a previously unexplored region within a physical crystal sample and to measure the collective KPZ activity of real, physical spin chains. Neutrons are an exceptional experimental tool for understanding complex magnetic behavior due to their neutral charge and magnetic moment and their ability to penetrate materials deeply in a nondestructive fashion.
Both methods revealed evidence of KPZ behavior at room temperature, a surprising accomplishment considering that quantum systems usually must be cooled to almost absolute zero to exhibit quantum mechanical effects. The researchers anticipate that these results would remain unchanged, regardless of variations in temperature.
"We're seeing pretty subtle quantum effects surviving to high temperatures, and that's an ideal scenario because it demonstrates that understanding and controlling magnetic networks can help us harness the power of quantum mechanical properties," Tennant said.
This project began during the development of the QSC, one of five recently launched Quantum Information Science Research Centers competitively awarded to multi-institutional teams by DOE. The researchers had realized their combined interests and expertise perfectly positioned them to tackle this notoriously difficult research challenge.
Through the QSC and other avenues, they plan to complete related experiments to cultivate a better understanding of 1D spin chains under the influence of a magnetic field, as well as similar projects focused on 2D systems.
"We showed spin moving in a special quantum mechanical way, even at high temperatures, and that opens up possibilities for many new research directions," Moore said.
INFORMATION:
This work was funded by the DOE Office of Science. Additional support was provided by the Quantum Science Center, a DOE Office of Science National Quantum Information Science Research Center, and the Simons Foundation's Investigator program.
UT-Battelle manages Oak Ridge National Laboratory for DOE's Office of Science, the single largest supporter of basic research in the physical sciences in the United States. DOE's Office of Science is working to address some of the most pressing challenges of our time. For more information, visit https://energy.gov/science.-- Elizabeth Rosenthal
WASHINGTON (March 31, 2021) -- In 2019, Blacks, Latinos and Native Americans were severely underrepresented in the health care workforce, a trend that shows limited signs of improvement, according to a study published today by George Washington University researchers.
"Our findings suggest that Blacks, Latinos and other people of color have been left behind when it comes to the health professions," Edward Salsberg, senior research scientist and co-director of the Health Workforce Diversity Tracker project at the GW Fitzhugh Mullan Institute for Health Workforce Equity, said. The Fitzhugh Mullan Institute ...
An invasive exotic species is one deliberately or unwittingly introduced by humans into a new habitat, where it becomes an environmental menace. In addition to the loss of biodiversity and other ecological impacts resulting from its presence, an invasive species can lead to economic losses in certain sectors, including agriculture, tourism, and public health. Though biological invasion is the second leading cause of species extinction, decision makers and the general public are still largely unaware of the issue.
After five years of study, the international research team* directed by scientists from the Écologie, Systématique et Évolution (CNRS ...
Comorbidities such as heart disease, respiratory disease, renal disease and cancer lead to an increased risk of death from Covid-19 according to new research from the University of East Anglia (UEA) and the Norfolk and Norwich University Hospital (NNUH).
At the start of the pandemic, there was concern that specific medications for high blood pressure could be linked with worse outcomes for Covid-19 patients.
Previous research from the UEA team showed this wasn't the case and that medications for high blood pressure could, in fact, improve Covid-19 survival rates and reduce the severity of infection.
New findings, published today in the Journal of the American Medical Association (JAMA) Network Open, additionally show that it is comorbidities such as heart disease, respiratory ...
Mount Sinai researchers have identified genetic and cellular mechanisms of Crohn's disease, providing new insights for future treatments that could offer a tailored approach to patients with the chronic inflammatory disease, according to a study published in END ...
CAMBRIDGE, MA -- When someone is sick, it's natural to want to stay as far from them as possible. It turns out this is also true for mice, according to an MIT study that also identified the brain circuit responsible for this distancing behavior.
In a study that explores how otherwise powerful instincts can be overridden in some situations, researchers from MIT's Picower Institute for Learning and Memory found that when male mice encountered a female mouse showing signs of illness, the males interacted very little with the females and made no attempts to mate with them as they normally would. The researchers also showed that this behavior is controlled by a circuit in the amygdala, which detects distinctive odors from sick animals and triggers a warning signal ...
NEW YORK, NY (March 31, 2021)--A shift in the definition of high blood pressure may help identify more women who are at risk of developing life-threatening complications during pregnancy and delivery, suggests a new study from Columbia University Vagelos College of Physicians and Surgeons.
Under the stricter definition, more than 50,000 additional women each year in the United States could become eligible for treatment with aspirin in pregnancy, which lowers the risk of developing preeclampsia, a sudden increase in blood pressure that can lead to stroke, seizures, hemorrhage, and death.
The ...
What The Study Did: This study sought to assess dermatologists' perceptions of and experiences with teledermatology in the context of the COVID-19 pandemic and new regulatory changes including parity in reimbursements between video and in-person visits.
Authors: Jules B. Lipoff, M.D., of the Perelman School of Medicine at the University of Pennsylvania in Philadelphia, is the corresponding author.
To access the embargoed study: Visit our For The Media website at this link https://media.jamanetwork.com/
(doi:10.1001/jamadermatol.2020.0195)
Editor's Note: The article includes conflict of interest disclosures. Please see the article for additional information, including other authors, author contributions and affiliations, ...
What The Study Did: Researchers compared mortality and severe adverse events in this systematic review and meta-analysis of 52 studies that evaluated clinical outcomes among nearly 102,000 patients with COVID-19 who did and didn't receive angiotensin-converting enzyme inhibitors (ACEIs) or angiotensin receptor blockers (ARBs).
Authors: Vassilios S. Vassiliou, M.B.B.S., Ph.D., of the University of East Anglia in Norwich, United Kingdom is the corresponding author.
To access the embargoed study: Visit our For The Media website at this link https://media.jamanetwork.com/
(doi:10.1001/jamanetworkopen.2021.3694)
Editor's Note: The article includes conflict of interest disclosures. Please see the article for additional information, including other authors, ...
What The Study Did: This study identified risk factors for SARS-CoV-2 incidence, hospitalization and death among nursing home residents in the United States.
Authors: James S. Goodwin, M.D., of the University of Texas Medical Branch in Galveston, is the corresponding author.
To access the embargoed study: Visit our For The Media website at this link https://media.jamanetwork.com/
(doi:10.1001/jamanetworkopen.2021.6315)
Editor's Note: The article includes funding/support disclosures. Please see the article for additional information, including other authors, author contributions and affiliations, conflict of interest and financial disclosures, and funding and support.
INFORMATION:
Media ...
What The Study Did: This study documented how perception of risk of infection and severe complications from COVID-19 were associated with underlying reported health.
Authors: Robert F. Schoeni, Ph..D., of the University of Michigan in Ann Arbor, is the corresponding author.
To access the embargoed study: Visit our For The Media website at this link https://media.jamanetwork.com/
(doi:10.1001/jamanetworkopen.2021.3984)
Editor's Note: The article includes conflict of interest and funding/support disclosures. Please see the article for additional information, including other authors, author contributions and affiliations, conflict of interest ...