PRESS-NEWS.org - Press Release Distribution
PRESS RELEASES DISTRIBUTION

Distant, spiralling stars give clues to the forces that bind sub-atomic particles

Space scientists have found a new way to probe the internal structure of neutron stars, giving clues about the makeup of matter at an atomic level.

Distant, spiralling stars give clues to the forces that bind sub-atomic particles
2021-04-01
(Press-News.org) Space scientists at the University of Bath in the UK have found a new way to probe the internal structure of neutron stars, giving nuclear physicists a novel tool for studying the structures that make up matter at an atomic level.

Neutron stars are dead stars that have been compressed by gravity to the size of small cities. They contain the most extreme matter in the universe, meaning they are the densest objects in existence (for comparison, if Earth were compressed to the density of a neutron star, it would measure just a few hundred meters in diameter, and all humans would fit in a teaspoon). This makes neutron stars unique natural laboratories for nuclear physicists, whose understanding of the force that binds sub-atomic particles is limited to their work on Earth-bound atomic nuclei. Studying how this force behaves under more extreme conditions offers a way to deepen their knowledge.

Step in astrophysicists, who look to distant galaxies to unravel the mysteries of physics.

In a study described in the Monthly Notices of the Royal Astronomical Society, Bath astrophysicists have found that the action of two neutron stars moving ever faster as they spiral towards a violent collision gives a clue to the composition of neutron-star material. From this information, nuclear physicists will be in a stronger position to calculate the forces that determine the structure of all matter.

RESONANCE

It is through the phenomenon of resonance that the Bath team has made its discovery. Resonance occurs when force is applied to an object at its natural frequency, generating a large, often catastrophic, vibrational motion. A well-known example of resonance is found when an opera singer shatters a glass by singing loudly enough at a frequency that matches the oscillation modes of the glass.

When a pair of in-spiralling neutron stars reach a state of resonance, their solid crust - which is thought to be 10-billion times stronger than steel - shatters. This results in the release of a bright burst of gamma-rays (called a Resonant Shattering Flare) that can be seen by satellites. The in-spiralling stars also release gravitational waves that can be detected by instruments on Earth. The Bath researchers found that by measuring both the flare and the gravitational-wave signal, they can calculate the 'symmetry energy' of the neutron star.

Symmetry energy is one of the properties of nuclear matter. It controls the ratio of the sub-atomic particles (protons and neutrons) that make up a nucleus, and how this ratio changes when subjected to the extreme densities found in neutron stars. A reading for symmetry energy would therefore give a strong indication of the makeup of neutron stars, and by extension, the processes by which all protons and neutrons couple, and the forces that determine the structure of all matter.

The researchers stress that measurements obtained by studying the resonance of neutron stars using a combination of gamma-rays and gravitational-waves would be complementary to, rather than a replacement for, the lab experiments of nuclear physicists.

"By studying neutron stars, and the cataclysmic final motions of these massive objects, we're able to understand something about the tiny, tiny nuclei that make up extremely dense matter," said Bath astrophysicist Dr David Tsang. "The enormous difference in scale makes this fascinating."

Astrophysics PhD student Duncan Neill, who led the research, added: "I like that this work looks at the same thing being studied by nuclear physicists. They look at tiny particles and we astrophysicists look at objects and events from many millions of light years away. We are looking at the same thing in a completely different way."

Dr Will Newton, astrophysicist at the Texas A&M University-Commerce and project collaborator, said: "Though the force that binds quarks into neutrons and protons is known, how it actually works when large numbers of neutrons and protons come together is not well understood. The quest to improve this understanding is helped by experimental nuclear physics data, but all the nuclei we probe on Earth have similar numbers of neutrons and protons bound together at roughly the same density.

"In neutron stars, nature provides us with a vastly different environment to explore nuclear physics: matter made mostly of neutrons and spanning a wide range of densities, up to about ten times the density of atomic nuclei. In this paper, we show how we can measure a certain property of this matter - the symmetry energy - from distances of hundreds of millions of light years away. This can shed light on the fundamental workings of nuclei."

INFORMATION:


[Attachments] See images for this press release:
Distant, spiralling stars give clues to the forces that bind sub-atomic particles

ELSE PRESS RELEASES FROM THIS DATE:

Finnish study detects lottery-like behavior in cryptocurrency market

Finnish study detects lottery-like behavior in cryptocurrency market
2021-04-01
Recent research from the University of Vaasa and the University of Jyväskyla shows that speculation and lottery-like behavior is a fundamental factor for the pricing of cryptocurrencies. Speculation could explain the enormous increase in the market capitalizations of cryptocurrencies. Nowadays more than 8000 cryptocurrencies have been launched. Unlike traditional assets like stocks, research has shown that investments in cryptocurrencies are associated with a considerably higher level of uncertainty. The price of Bitcoin, which is the first traded cryptocurrency, increased by from $7,200.17 to $29,374.15 in January 1, 2020 ...

U of A team identifies protein that blocks body's ability to clear bad cholesterol

U of A team identifies protein that blocks bodys ability to clear bad cholesterol
2021-04-01
A team of researchers at the University of Alberta has uncovered a long-sought link in the battle to control cholesterol and heart disease. The protein that interferes with low-density lipoprotein (LDL) receptors that clear "bad" cholesterol from the blood was identified in END ...

Disrupted biochemical pathway in the brain linked to bipolar disorder

2021-04-01
MADISON - Bipolar disorder affects millions of Americans, causing dramatic swings in mood and, in some people, additional effects such as memory problems. While bipolar disorder is linked to many genes, each one making small contributions to the disease, scientists don't know just how those genes ultimately give rise to the disorder's effects. However, in new research, scientists at the University of Wisconsin-Madison have found for the first time that disruptions to a particular protein called Akt can lead to the brain changes characteristic of bipolar disorder. The results offer a foundation for research into treating the often-overlooked cognitive impairments of bipolar disorder, ...

NASA OSIRIS-REx's final asteroid observation run

NASA OSIRIS-RExs final asteroid observation run
2021-04-01
NASA's OSIRIS-REx mission is on the brink of discovering the extent of the mess it made on asteroid Bennu's surface during last fall's sample collection event. On Apr. 7, the OSIRIS-REx spacecraft will get one last close encounter with Bennu as it performs a final flyover to capture images of the asteroid's surface. While performing the flyover, the spacecraft will observe Bennu from a distance of about 2.3 miles (3.7 km) - the closest it's been since the Touch-and-Go Sample Collection event on Oct. 20, 2020. The OSIRIS-REx team decided to add this last flyover after Bennu's surface was significantly disturbed by the sample collection event. During touchdown, the spacecraft's ...

BrainGate: First human use of high-bandwidth wireless brain-computer interface

BrainGate: First human use of high-bandwidth wireless brain-computer interface
2021-04-01
PROVIDENCE, R.I. [Brown University and Providence Veterans Affairs Medical Center] -- Brain-computer interfaces (BCIs) are an emerging assistive technology, enabling people with paralysis to type on computer screens or manipulate robotic prostheses just by thinking about moving their own bodies. For years, investigational BCIs used in clinical trials have required cables to connect the sensing array in the brain to computers that decode the signals and use them to drive external devices. Now, for the first time, BrainGate clinical trial participants with tetraplegia have demonstrated use of an intracortical wireless BCI with an external wireless transmitter. The system is capable of transmitting brain signals at single-neuron resolution and ...

Titanium dioxide stars in the first IFJ PAN research at the Cracow synchrotron

Titanium dioxide stars in the first IFJ PAN research at the Cracow synchrotron
2021-04-01
Few compounds are as important to industry and medicine today as titanium dioxide. Despite the variety and popularity of its applications, many issues related to the surface structure of materials made of this compound and the processes taking place therein remain unclear. Some of these secrets have just been revealed to scientists from the Institute of Nuclear Physics of the Polish Academy of Sciences. It was the first time they had used the SOLARIS synchrotron in their research. It is found in many chemical reactions as a catalyst, as a pigment in plastics, paints or cosmetics and in medical implants it ...

Spin-to-charge conversion achieves 95% overall qubit readout fidelity

Spin-to-charge conversion achieves 95% overall qubit readout fidelity
2021-04-01
The team led by Professor DU Jiangfeng and Professor WANG Ya from the Chinese Academy of Sciences (CAS) Key Laboratory of Microscale Magnetic Resonance of the University of Science and Technology of China put forward an innovative spin-to-charge conversion method to achieve high-fidelity readout of qubits, stepping closer towards fault-tolerant quantum computing. Quantum supremacy over classical computers has been fully exhibited in some specific problems, yet the next milestone, fault-tolerant quantum computing, still requires the accumulated logic gate error and the spin readout fidelity to exceed the fault-tolerant threshold. DU's team has resolved the first requirement in the nitrogen-vacancy (NV) center system ...

Pollen season in Switzerland earlier and more intense due to climate change

2021-04-01
Pollen from trees, grasses and weeds are causing seasonal allergies for approximately one fifth of the Swiss population every year. A study now found that due to climate change, the pollen season has shifted substantially over the past 30 years in onset, duration and intensity. "For at least four allergenic species, the tree pollen season now starts earlier than 30 years ago - sometimes even before January," said Marloes Eeftens, Principal Investigator and Group Leader at Swiss TPH. "The duration and intensity of the pollen season have also increased for several species, meaning that allergic people not only suffer for a longer period of time but also react stronger to these higher concentrations." The researchers analysed pollen data from 1990 ...

Low risk of researchers passing coronavirus to North American bats

Low risk of researchers passing coronavirus to North American bats
2021-04-01
The risk is low that scientists could pass coronavirus to North American bats during winter research, according to a new study led by the U.S. Geological Survey. Scientists find the overall risk to be 1 in 1,000 if no protective measures are taken, and the risk falls lower, to 1 in 3,333 or less, with proper use of personal protective equipment or if scientists test negative for COVID-19 before beginning research. The research specifically looked at the potential transmission of SARS-CoV-2, which is the type of coronavirus that causes COVID-19, from people to bats. Scientists did not examine potential ...

Search for strange Skyrmion phenomenon fails but finds stranger magnetic beaded necklace

Search for strange Skyrmion phenomenon fails but finds stranger magnetic beaded necklace
2021-04-01
University of Warwick physicists set out to find Skyrmions, only to find near-identical object with distinctive qualities that they have named an incommensurate spin crystal Scientists looked for the signs of the magnetic spin texture in ultra-thin materials only a few atoms thick Physicists have great interest in the potential of Skyrmions frequently detected by their ambiguous, bulk electrical measurements. This new discovery could point the way for a new basis for technologies in computer memory and storage Physicists on the hunt for a rarely seen magnetic spin texture have ...

LAST 30 PRESS RELEASES:

NASA’s Parker Solar Probe makes history with closest pass to Sun

Are we ready for the ethical challenges of AI and robots?

Nanotechnology: Light enables an "impossibile" molecular fit

Estimated vaccine effectiveness for pediatric patients with severe influenza

Changes to the US preventive services task force screening guidelines and incidence of breast cancer

Urgent action needed to protect the Parma wallaby

Societal inequality linked to reduced brain health in aging and dementia

Singles differ in personality traits and life satisfaction compared to partnered people

President Biden signs bipartisan HEARTS Act into law

Advanced DNA storage: Cheng Zhang and Long Qian’s team introduce epi-bit method in Nature

New hope for male infertility: PKU researchers discover key mechanism in Klinefelter syndrome

Room-temperature non-volatile optical manipulation of polar order in a charge density wave

Coupled decline in ocean pH and carbonate saturation during the Palaeocene–Eocene Thermal Maximum

Unlocking the Future of Superconductors in non-van-der Waals 2D Polymers

Starlight to sight: Breakthrough in short-wave infrared detection

Land use changes and China’s carbon sequestration potential

PKU scientists reveals phenological divergence between plants and animals under climate change

Aerobic exercise and weight loss in adults

Persistent short sleep duration from pregnancy to 2 to 7 years after delivery and metabolic health

Kidney function decline after COVID-19 infection

Investigation uncovers poor quality of dental coverage under Medicare Advantage

Cooking sulfur-containing vegetables can promote the formation of trans-fatty acids

How do monkeys recognize snakes so fast?

Revolutionizing stent surgery for cardiovascular diseases with laser patterning technology

Fish-friendly dentistry: New method makes oral research non-lethal

Call for papers: 14th Asia-Pacific Conference on Transportation and the Environment (APTE 2025)

A novel disturbance rejection optimal guidance method for enhancing precision landing performance of reusable rockets

New scan method unveils lung function secrets

Searching for hidden medieval stories from the island of the Sagas

Breakthrough study reveals bumetanide treatment restores early social communication in fragile X syndrome mouse model

[Press-News.org] Distant, spiralling stars give clues to the forces that bind sub-atomic particles
Space scientists have found a new way to probe the internal structure of neutron stars, giving clues about the makeup of matter at an atomic level.