PRESS-NEWS.org - Press Release Distribution
PRESS RELEASES DISTRIBUTION

A PTV-based polymer enabled organic solar cells with over 16% efficiency

A PTV-based polymer enabled organic solar cells with over 16% efficiency
2021-04-02
(Press-News.org) Organic solar cell (OSC) is one of the most important green energy technologies. The photovoltaic efficiencies of OSCs are closely related to the photoactive layers, which are prepared by blending electron donor and acceptor materials. With the emergence of a large number of new organic photovoltaic materials and effective molecular modification methods, the photovoltaic efficiency of OSCs has been greatly improved. Accordingly, the molecular structure of the materials is becoming much more complex with high costs, which is difficult to meet the requirements of the industrialization of OSCs. Thus, it is of great importance to develop novel photovoltaic materials with low-cost and high performance simultaneously.

Some classical conjugated polymers (such as polythiophenes, polythienylene vinylenes, polyphenylene vinylenes, etc.) in the early stage of organic photovoltaic field have simple molecular structure and great cost advantage, which play important roles in the early research of OSCs. However, the classical conjugated polymers have gradually faded out of high efficiency OSCs due to the problem that "the aggregation state and molecular energy level cannot match well with the new non-fullerene-acceptors". Therefore, can we explore an effective molecular design strategy, which could revitalize the classic low-cost polymers with high photovoltaic performance?

Recently, the National Science Review (NSR) online published the latest research work of the research group of Professor Zhang Shaoqing of University of science and technology, Beijing and the research group of Hou Jianhui of Institute of chemistry of Chinese Academy of Sciences. Based on the classic backbone of poly(thienylene vinylene) (PTV), an ester substituted PTV derivative, PTVT-T, was designed and prepared in very few steps. A remarkable photovoltaic efficiency of 16.2% was then realized by using PTVT-T as donor material.

The key point of the molecular design strategy is that the symmetrical diester groups were introduced in the repeated segments of PTVT-T, which enable its significant aggregation effect in solution state and the molecular energy level of PTVT-T can be modulated synergistically.

In the repeat unit of PTVT-T, the introduction of the symmetrical ester substituents makes the polymer have a more stable planar conformation, which leads to a significant "aggregation effect in solution state". As a result, nano scale phase separation morphology can be easily formed in the active layer. Low-lying Homo level is also important for designing new polymer donor materials, which enables high output voltage in the corresponding OSCs. The diester groups in PTVT-T exhibits significant electron withdrawing properties, which reduces its HOMO energy level to - 5.28 eV.

The outstanding advantages of PTVT-T are: (a) the low-cost feature enabled by the very simple chemical structure and synthesis method; (b) matched photoelectronic properties with three typical acceptor materials; (c) the corresponding OSCs have high performance and good stability.

PTVT-T show simple chemical structure and does not contain the F atom, which are commonly used in other highly efficient polymer donors. Therefore, the synthesis steps and the costs of PTVT-T are significantly lower than those of the polymers with state-of-the-art efficiencies. PTVT-T can work well with the representative acceptors, PCBM, IT-4F and eC9, showing great potential to match with new emerging acceptor materials.

Particularly, a remarkable efficiency of 16.20% can be realized by blending PTVT-T with the acceptor eC9, and the corresponding devices show good stability, i.e., the cells can maintain over 80% of the initial efficiency after continuous illumination of AM 1.5G for about 500 hours.

This work demonstrated that the conjugated polymers with simple chemical structure, especially for the classical polymers developed in the early stage of OSC, will be revitalized by rational molecular design method and realize highly efficient OSC with low-cost feature.

INFORMATION:

The study was published in National Science Review with the title of "Molecular design revitalizes the low cost PTV polymer for high efficiency organic solar cells". Ren Junzhen, a laboratory technician of University of science and technology, Beijing and Institute of chemistry of Chinese Academy of Sciences, is the first author of the research article. Professor Zhang Shaoqing and Professor Hou Jianhui are the corresponding authors.

See the article: Junzhen Ren, Pengqing Bi, Jianqi Zhang, Jiao Liu, Jingwen Wang, Ye Xu, Zhixiang Wei, Shaoqing Zhang, and Jianhui Hou
Molecular design revitalizes the low-cost PTV-polymer for highly efficient organic solar cells
Natl Sci Rev
https://doi.org/10.1093/nsr/nwab031

The National Science Review is the first comprehensive scholarly journal released in English in China that is aimed at linking the country's rapidly advancing community of scientists with the global frontiers of science and technology. The journal also aims to shine a worldwide spotlight on scientific research advances across China.


[Attachments] See images for this press release:
A PTV-based polymer enabled organic solar cells with over 16% efficiency

ELSE PRESS RELEASES FROM THIS DATE:

Probiotics keep calves healthy, too!

Probiotics keep calves healthy, too!
2021-04-02
Scientists in Japan have developed and tested a novel probiotic formulation to control severe diarrhea in calves, ensuring their health and reducing mortality, and in turn reducing economic loss. The health of calves is a crucial component in animal husbandry; diseases that affect calves cause economic losses to livestock farms either directly, due to death of the calves, or indirectly, due to weight loss that reduces productivity over the animals' lifespans. In Japan, bovine rotavirus (BRV) and bovine cryptosporidiosis infections are major diseases that cause severe diarrhea in calves. A team of scientists from Hokkaido, including Associate Professor Satoru Konnai of the Faculty of Veterinary Medicine at Hokkaido University, have ...

Targeting microRNAs could unmask hidden vulnerability in breast cancer stem cells

Targeting microRNAs could unmask hidden vulnerability in breast cancer stem cells
2021-04-02
Researchers in Italy have identified a pair of microRNA molecules that help maintain a population of cancerous stem cells that drive the growth of breast cancers and initiate tumor relapse after treatment. The study, which will be published April 2 in the Journal of Cell Biology (JCB), reveals that targeting these microRNAs makes cancer stem cells more susceptible to some chemotherapies and could potentially improve the prognosis of patients with aggressive forms of breast cancer. Many tumors contain a small population of cancer stem cells that initiate tumor growth and give rise to the various cell types found in tumors. Moreover, because cancer stem cells are often resistant to radio- and chemotherapies, they can survive and promote tumor ...

Therapeutic resistance linked to softer tissue environment in breast cancer

Therapeutic resistance linked to softer tissue environment in breast cancer
2021-04-02
Researchers at the University of California, San Francisco, have discovered that aggressive, triple-negative breast cancers (TNBCs) can evade treatment by reorganizing and softening the collagen matrix that surrounds the cancer cells. The study, which will be published April 2 in the Journal of Experimental Medicine (JEM), shows that the softer matrix activates a signaling pathway that promotes the cancer cells' survival, and suggests that targeting this pathway could enhance the effectiveness of chemo- and radiotherapy in TNBC patients. TNBC is an aggressive type of breast cancer with worse survival rates than other forms of the disease. Because TNBC cells lack the HER2 signaling ...

Massive X-ray screening identifies promising candidates for COVID drugs

2021-04-02
A team of researchers has identified several candidates for drugs against the coronavirus SARS-CoV-2 at DESY´s high-brilliance X-ray lightsource PETRA III. They bind to an important protein of the virus and could thus be the basis for a drug against Covid-19. In a so-called X-ray screening, the researchers, under the leadership of DESY, tested almost 6000 known active substances that already exist for the treatment of other diseases in a short amount of time. After measuring about 7000 samples, the team was able to identify a total of 37 substances that bind to the main protease (Mpro) of the SARS-CoV-2 virus, as the scientists report online today in the journal ...

Scientists observe role of cavitation in glass fracturing

Scientists observe role of cavitation in glass fracturing
2021-04-02
Glassy materials play an integral role in the modern world, but inherent brittleness has long been the Achilles' heel that severely limits their usefulness. Due to the disordered amorphous structure of glassy materials, many mysteries remain. These include the fracture mechanisms of traditional glasses, such as silicate glasses, as well as the origin of the intriguing patterned fracture morphologies of metallic glasses. Cavitation has been widely assumed to be the underlying mechanism governing the fracture of metallic glasses, as well as other glassy systems. Up until now, however, scientists ...

Qubits comprised of holes could be the trick to build faster, larger quantum computers

Qubits comprised of holes could be the trick to build faster, larger quantum computers
2021-04-02
A new study indicates holes the solution to operational speed/coherence trade-off, potential scaling up of qubits to a mini-quantum computer. Quantum computers are predicted to be much more powerful and functional than today's 'classical' computers. One way to make a quantum bit is to use the 'spin' of an electron, which can point either up or down. To make quantum computers as fast and power-efficient as possible we would like to operate them using only electric fields, which are applied using ordinary electrodes. Although spin does not ordinarily 'talk' to electric fields, in some materials spins can interact with electric fields indirectly, and these are some of the hottest materials currently studied ...

Criteria for selecting COVID-19 patients for lung lung transplantation

2021-04-02
In May 2020, a team led by thoracic surgeon Konrad Hoetzenecker of the Department of Surgery of MedUni Vienna and Vienna General Hospital performed a lung transplant on a 44-year-old patient who had been seriously ill with Covid-19, making her the first patient in Europe to receive a lung transplant for this indication. The Vienna lung transplantation programme now plays a leading role in an international consortium comprising experts from the USA, Europe and Asia. Based on the expertise from Vienna, approximately 40 transplants have now been carried out on Covid-19 patients throughout the world. In a study published in the leading journal ...

Scientists developed a safe and cheap technology of disinfection of the packed eggs

Scientists developed a safe and cheap technology of disinfection of the packed eggs
2021-04-02
Russian researchers have developed an inexpensive, safe, and reliable packed eggs surface disinfection technology. This technology helps to kill bacteria, including salmonella, on eggshells. Also, it allows growing broiler chickens with strong immunity to viral diseases. Packed eggs are disinfected with 50 nanoseconds (one billionth of a second) electron beam. Disinfection takes place in plastic containers. The description of the technology was published in Food and Bioproducts Processing. "Disinfection of the packed eggs protects eggs from subsequent contamination during storage", said Sergey Sokovnin, a professor at Ural Federal University and Ural Branch of Russian Academy of Science. "We found out that 5 kGy is enough for disinfection. Such dose allows to ...

Protein based biomarker identifies the chemo drug sensitivity

Protein based biomarker identifies the chemo drug sensitivity
2021-04-02
Niigata, Japan - Cancer is the world's second deadliest disease which contributes towards the fatality of over 10 million people per year. Oncologists adopt a variety of treatment procedures to treat cancer cells. Among the different methods used to fight cancer, chemotherapeutic treatment is a prominent and well-adopted technique. It is a drug based method, wherein powerful chemical compounds are injected into the body to annihilate the malignant cells. Although these chemicals support the destruction of the cancerous cells, optimizing their dosage has always been a challenge to the medical ...

MOF-based sensor for water quality testing

2021-04-02
In United Nations Sustainable Development Goals, Number 6, addresses the need for access to clean water and sanitation for all. In the worldwide situation, one in three people do not have access to safe drinking water, and two out of five do not have basic hand-washing facilities with soap and water. Water quality also address to elements dissolved. In the case of fluoride, controlled amount are recommended for protect tooth, e.g. included in toothpaste. Higher levels can cause fluorosis, interfere in tooth enamel formation, correct growth of the bones, and cause crippling deformities of the spine and joints. The incidence of higher concentrations of fluoride in water is higher in rural areas without ...

LAST 30 PRESS RELEASES:

AI finds undiagnosed liver disease in early stages

The American Society of Tropical Medicine and Hygiene and the Bill & Melinda Gates Foundation announce new research fellowship in malaria genomics in honor of professor Dominic Kwiatkowski

Excessive screen time linked to early puberty and accelerated bone growth

First nationwide study discovers link between delayed puberty in boys and increased hospital visits

Traditional Mayan practices have long promoted unique levels of family harmony. But what effect is globalization having?

New microfluidic device reveals how the shape of a tumour can predict a cancer’s aggressiveness

Speech Accessibility Project partners with The Matthew Foundation, Massachusetts Down Syndrome Congress

Mass General Brigham researchers find too much sitting hurts the heart

New study shows how salmonella tricks gut defenses to cause infection

Study challenges assumptions about how tuberculosis bacteria grow

NASA Goddard Lidar team receives Center Innovation Award for Advancements

Can AI improve plant-based meats?

How microbes create the most toxic form of mercury

‘Walk this Way’: FSU researchers’ model explains how ants create trails to multiple food sources

A new CNIC study describes a mechanism whereby cells respond to mechanical signals from their surroundings

Study uncovers earliest evidence of humans using fire to shape the landscape of Tasmania

Researchers uncover Achilles heel of antibiotic-resistant bacteria

Scientists uncover earliest evidence of fire use to manage Tasmanian landscape

Interpreting population mean treatment effects in the Kansas City Cardiomyopathy Questionnaire

Targeting carbohydrate metabolism in colorectal cancer: Synergy of therapies

Stress makes mice’s memories less specific

Research finds no significant negative impact of repealing a Depression-era law allowing companies to pay workers with disabilities below minimum wage

Resilience index needed to keep us within planet’s ‘safe operating space’

How stress is fundamentally changing our memories

Time in nature benefits children with mental health difficulties: study

In vitro model enables study of age-specific responses to COVID mRNA vaccines

Sitting too long can harm heart health, even for active people

International cancer organizations present collaborative work during oncology event in China

One or many? Exploring the population groups of the largest animal on Earth

ETRI-F&U Credit Information Co., Ltd., opens a new path for AI-based professional consultation

[Press-News.org] A PTV-based polymer enabled organic solar cells with over 16% efficiency