PRESS-NEWS.org - Press Release Distribution
PRESS RELEASES DISTRIBUTION

Better solutions for making hydrogen may lie just at the surface

Better solutions for making hydrogen may lie just at the surface
2021-04-09
(Press-News.org) A clean energy future propelled by hydrogen fuel depends on figuring out how to reliably and efficiently split water. That's because, even though hydrogen is abundant, it must be derived from another substance that contains it -- and today, that substance is often methane gas. Scientists are seeking ways to isolate this energy-carrying element without using fossil fuels. That would pave the way for hydrogen-fueled cars, for example, that emit only water and warm air at the tailpipe.

Water, or H2O, unites hydrogen and oxygen. Hydrogen atoms in the form of molecular hydrogen must be separated out from this compound. That process depends on a key -- but often slow -- step: the oxygen evolution reaction (OER). The OER is what frees up molecular oxygen from water, and controlling this reaction is important not only to hydrogen production but a variety of chemical processes, including ones found in batteries.

"The oxygen evolution reaction is a part of so many processes, so the applicability here is quite broad." -- Pietro Papa Lopes, Argonne assistant scientist

A study led by scientists at the U.S. Department of Energy's (DOE) Argonne National Laboratory illuminates a shape-shifting quality in perovskite oxides, a promising type of material for speeding up the OER. Perovskite oxides encompass a range of compounds that all have a similar crystalline structure. They typically contain an alkaline earth metal or lanthanides such as La and Sr in the A-site, and a transition metal such as Co in the B-site, combined with oxygen in the formula ABO3. The research lends insight that could be used to design new materials not only for making renewable fuels but also storing energy.

Perovskite oxides can bring about the OER, and they are less expensive than precious metals such as iridium or ruthenium that also do the job. But perovskite oxides are not as active (in other words, efficient at accelerating the OER) as these metals, and they tend to slowly degrade.

"Understanding how these materials can be active and stable was a big driving force for us," said Pietro Papa Lopes, an assistant scientist in Argonne's Materials Science division who led the study. "We wanted to explore the relationship between these two properties and how that connects to the properties of the perovskite itself."

Previous research has focused on the bulk properties of perovskite materials and how those relate to the OER activity. The researchers wondered, however, whether there was more to the story. After all, the surface of a material, where it reacts with its surroundings, can be completely different from the rest. Examples like this are everywhere in nature: think of a halved avocado that quickly browns where it meets the air but remains green inside. For perovskite materials, a surface that becomes different from the bulk could have important implications for how we understand their properties.

In water electrolyzer systems, which split water into hydrogen and oxygen, perovskite oxides interact with an electrolyte made of water and special salt species, creating an interface that allows the device to operate. As electrical current is applied, that interface is critical in kicking off the water-splitting process. "The material's surface is the most important aspect of how the oxygen evolution reaction will proceed: How much voltage you need, and how much oxygen and hydrogen you're going to be producing," Lopes said.

Not only is the perovskite oxide's surface different from the rest of the material, it also changes over time. "Once it's in an electrochemical system, the perovskite surface evolves and turns into a thin, amorphous film," Lopes said. "It's never really the same as the material you start with."

The researchers combined theoretical calculations and experiments to determine how the surface of a perovskite material evolves during the OER. To do so with precision, they studied lanthanum cobalt oxide perovskite and tuned it by "doping" the lanthanum with strontium, a more reactive metal. The more strontium was added to the initial material, the faster its surface evolved and became active for the OER -- a process the researchers were able to observe at atomic resolution with transmission electron microscopy. The researchers found that strontium dissolution and oxygen loss from the perovskite were driving the formation of this amorphous surface layer, which was further explained by computational modelling performed using the Center for Nanoscale Materials, a DOE Office of Science User Facility.

"The last missing piece to understand why the perovskites were active towards the OER was to explore the role of small amounts of iron present in the electrolyte," Lopes said. The same group of researchers recently discovered that traces of iron can improve the OER on other amorphous oxide surfaces. Once they determined that a perovskite surface evolves into an amorphous oxide, then it became clear why iron was so important.

"Computational studies help scientists understand reaction mechanisms that involve both the perovskite surface and the electrolyte," said Peter Zapol, a physicist at Argonne and study co-author. "We focused on reaction mechanisms that drive both activity and stability trends in perovskite materials. This is not typically done in computational studies, which tend to focus solely on the reaction mechanisms responsible for the activity."

The study found that the perovskite oxide's surface evolved into a cobalt-rich amorphous film just a few nanometers thick. When iron was present in the electrolyte, the iron helped accelerate the OER, while the cobalt-rich film had a stabilizing effect on the iron, keeping it active at the surface.

The results suggest new potential strategies for designing perovskite materials -- one can imagine creating a two-layer system, Lopes said, that is even more stable and capable of promoting the OER.

"The OER is a part of so many processes, so the applicability here is quite broad," Lopes said. "Understanding the dynamics of materials and their effect on the surface processes is how we can make energy conversion and storage systems better, more efficient and affordable."

INFORMATION:

The study is described in a paper published and highlighted on the Feb. 24 cover of the Journal of the American Chemical Society, "Dynamically Stable Active Sites from Surface Evolution of Perovskite Materials during the Oxygen Evolution." In addition to Lopes and Zapol, coauthors include Dong Young Chung, Hong Zheng, Pedro Farinazzo Bergamo Dias Martins, Dusan Strmcnik, Vojislav Stamenkovic, Nenad Markovic and John Mitchell at Argonne; Xue Rui and Robert Klie at the University of Illinois at Chicago; and Haiying He at Valparaiso University. This research was funded by DOE's Office of Basic Energy Sciences.

About Argonne's Center for Nanoscale Materials
The Center for Nanoscale Materials is one of the five DOE Nanoscale Science Research Centers, premier national user facilities for interdisciplinary research at the nanoscale supported by the DOE Office of Science. Together the NSRCs comprise a suite of complementary facilities that provide researchers with state-of-the-art capabilities to fabricate, process, characterize and model nanoscale materials, and constitute the largest infrastructure investment of the National Nanotechnology Initiative. The NSRCs are located at DOE's Argonne, Brookhaven, Lawrence Berkeley, Oak Ridge, Sandia and Los Alamos National Laboratories. For more information about the DOE NSRCs, please visit https://science.osti.gov/User-Facilities/User-Facilities-at-a-Glance.

Argonne National Laboratory seeks solutions to pressing national problems in science and technology. The nation's first national laboratory, Argonne conducts leading-edge basic and applied scientific research in virtually every scientific discipline. Argonne researchers work closely with researchers from hundreds of companies, universities, and federal, state and municipal agencies to help them solve their specific problems, advance America's scientific leadership and prepare the nation for a better future. With employees from more than 60 nations, Argonne is managed by UChicago Argonne, LLC for the U.S. Department of Energy's Office of Science.

The U.S. Department of Energy's Office of Science is the single largest supporter of basic research in the physical sciences in the United States and is working to address some of the most pressing challenges of our time. For more information, visit https://energy.gov/science.


[Attachments] See images for this press release:
Better solutions for making hydrogen may lie just at the surface

ELSE PRESS RELEASES FROM THIS DATE:

Aluminum is intricately associated with the neuropathology of familial Alzheimer's disease

Aluminum is intricately associated with the neuropathology of familial Alzheimers disease
2021-04-09
Amsterdam, April 9, 2021 -- This study builds upon two earlier published studies (Mold et al., 2020, Journal of Alzheimer's Disease Reports) from the same group. The new data, also published in the Journal of Alzheimer's Disease Reports, demonstrate that aluminum is co-located with phosphorylated tau protein, present as tangles within neurons in the brains of early-onset or familial Alzheimer's disease (AD). "The presence of these tangles is associated with neuronal cell death, and observations of aluminum in these tangles may highlight a role for aluminum in their formation," explained lead investigator Matthew John Mold, PhD, Birchall Centre, Lennard-Jones ...

Optically active defects improve carbon nanotubes

Optically active defects improve carbon nanotubes
2021-04-09
The properties of carbon-based nanomaterials can be altered and engineered through the deliberate introduction of certain structural "imperfections" or defects. The challenge, however, is to control the number and type of these defects. In the case of carbon nanotubes - microscopically small tubular compounds that emit light in the near-infrared - chemists and materials scientists at Heidelberg University led by Prof. Dr Jana Zaumseil have now demonstrated a new reaction pathway to enable such defect control. It results in specific optically active defects - so-called sp3 defects - which are more luminescent and can emit single photons, that is, particles of light. The efficient ...

Using genetics, researchers identify potential drugs for early treatment of COVID-19

Using genetics, researchers identify potential drugs for early treatment of COVID-19
2021-04-09
A new study using human genetics suggests researchers should prioritize clinical trials of drugs that target two proteins to manage COVID-19 in its early stages. The findings appeared online in the journal Nature Medicine in March 2021. Based on their analyses, the researchers are calling for prioritizing clinical trials of drugs targeting the proteins IFNAR2 and ACE2. The goal is to identify existing drugs, either FDA-approved or in clinical development for other conditions, that can be repurposed for the early management of COVID-19. Doing so, they say, will help keep people with the virus from being hospitalized. IFNAR2 is the target ...

Stress from work and social interactions put women at higher coronary heart disease risk

2021-04-09
PHILADELPHIA - Psychosocial stress - typically resulting from difficulty coping with challenging environments - may work synergistically to put women at significantly higher risk of developing coronary heart disease, according to a study by researchers at Drexel University's Dornsife School of Public Health, recently published in the Journal of the American Heart Association. The study specifically suggests that the effects of job strain and social strain -- the negative aspect of social relationships -- on women is a powerful one-two punch. Together they are associated with a 21% higher risk of developing coronary heart disease. Job strain ...

Computer model fosters potential improvements to 'bionic eye' technology

Computer model fosters potential improvements to bionic eye technology
2021-04-09
There are millions of people who face the loss of their eyesight from degenerative eye diseases. The genetic disorder retinitis pigmentosa alone affects 1 in 4,000 people worldwide. Today, there is technology available to offer partial eyesight to people with that syndrome. The Argus II, the world's first retinal prosthesis, reproduces some functions of a part of the eye essential to vision, to allow users to perceive movement and shapes. While the field of retinal prostheses is still in its infancy, for hundreds of users around the globe, the "bionic eye" enriches the way they interact with the world on a daily basis. For instance, seeing outlines of objects enables them to move around unfamiliar environments with increased safety. That is ...

New biosealant can stabilize cartilage, promote healing after injury

2021-04-09
A new biosealant therapy may help to stabilize injuries that cause cartilage to break down, paving the way for a future fix or - even better - begin working right away with new cells to enhance healing, according to a new animal-based study by researchers at the Perelman School of Medicine at the University of Pennsylvania. Their research was published in Advanced Healthcare Materials. "Our research shows that using our hyaluronic acid hydrogel system at least temporarily stops cartilage degeneration that commonly occurs after injury and causes pain in joints," said the study's senior author, Robert Mauck, PhD, a professor of Orthopaedic Surgery and the director of Penn Medicine's McKay Orthopaedic Research Laboratory. "In addition to pausing cartilage breakdown, we think that applying ...

New research on why 'poo' transplants effectively treat C. diff

2021-04-09
Experts have uncovered a new molecular reason why faecal transplants are highly effective in treating infections such as C. difficile (a nasty bacteria that can infect the bowel), which could lead to more targeted treatments for this and other similar diseases. The study, published today in Gastroenterology, was led by experts from the University of Nottingham and Nottingham Trent University. Clostridium difficile, also known as C. difficile or C. diff, is a bacterium that can infect the bowel and cause diarrhoea. The infection most commonly affects people who have recently been treated with antibiotics. It can spread easily to others. A stool transplant - or to give it its full title "a faecal ...

Genes and immune cells predict immunotherapy success in bladder cancer

2021-04-09
New York, NY (April 9, 2021) - Sets of genes associated with resistance to immunotherapy in patients with metastatic urothelial cancer of the bladder have been identified and validated by researchers at Mount Sinai. In a study published in Clinical Cancer Research, the team uncovered gene signatures representing adaptive immunity and pro-tumorigenic inflammation that were responsible for sensitivity or resistance to immune checkpoint inhibitors, drugs that help the body's immune system recognize and attack cancerous cells. "These findings enabled us to identify potential biomarkers in patients who are less likely to respond favorably to immune checkpoint inhibitors, as well as new combination therapeutic approaches that might overcome such resistance ...

Sustained COVID-19 vaccine willingness in Denmark following the rare cases of blood clots

2021-04-09
Nine out of ten Danes say that they will accept the COVID-19 vaccine when offered. This is the same level as before the AstraZeneca vaccine was paused. This is shown by a questionnaire-based survey collected by Søren Dinesen Østergaard and co-authors. He is professor at the Department of Clinical Medicine at Aarhus University and affiliated with the Department of Affective Disorders at Aarhus University Hospital, Psychiatry. "In February 2021, we asked a sample of Danes whether they were willing to be vaccinated against the coronavirus, and 89 per cent replied that they would. This picture was unchanged when the same people were asked again after the pausing of the AstraZeneca vaccine," says Søren Dinesen Østergaard. ...

Abrupt ice age climate changes behaved like cascading dominoes

Abrupt ice age climate changes behaved like cascading dominoes
2021-04-09
Throughout the last ice age, the climate changed repeatedly and rapidly during so-called Dansgaard-Oeschger events, where Greenland temperatures rose between 5 and 16 degrees Celsius in decades. When certain parts of the climate system changed, other parts of the climate system followed like a series of dominos toppling in succession. This is the conclusion from an analysis of ice-core data by a group of researchers that included postdoc Emilie Capron and associate professor Sune Olander Rasmussen from the Section for the Physics of Ice, Climate and Earth at the Niels Bohr ...

LAST 30 PRESS RELEASES:

Music-based therapy may improve depressive symptoms in people with dementia

No evidence that substituting NHS doctors with physician associates is necessarily safe

At-home brain speed tests bridge cognitive data gaps

CRF appoints Josep Rodés-Cabau, M.D., Ph.D., as editor-in-chief of structural heart: the journal of the heart team

Violent crime is indeed a root cause of migration, according to new study

Customized smartphone app shows promise in preventing further cognitive decline among older adults diagnosed with mild impairment

Impact of COVID-19 on education not going away, UM study finds

School of Public Health researchers receive National Academies grant to assess environmental conditions in two Houston neighborhoods

Three Speculum articles recognized with prizes

ACM A.M. Turing Award honors two researchers who led the development of cornerstone AI technology

Incarcerated people are disproportionately impacted by climate change, CU doctors say

ESA 2025 Graduate Student Policy Award Cohort Named

Insomnia, lack of sleep linked to high blood pressure in teens

Heart & stroke risks vary among Asian American, Native Hawaiian & Pacific Islander adults

Levels of select vitamins & minerals in pregnancy may be linked to lower midlife BP risk

Large study of dietary habits suggests more plant oils, less butter could lead to better health

Butter and plant-based oils intake and mortality

20% of butterflies in the U.S. have disappeared since 2000

Bacterial ‘jumping genes’ can target and control chromosome ends

Scientists identify genes that make humans and Labradors more likely to become obese

Early-life gut microbes may protect against diabetes, research in mice suggests

Study raises the possibility of a country without butterflies

Study reveals obesity gene in dogs that is relevant to human obesity studies

A rapid decline in US butterfly populations

Indigenous farming practices have shaped manioc’s genetic diversity for millennia

Controlling electrons in molecules at ultrafast timescales

Tropical forests in the Americas are struggling to keep pace with climate change

Brain mapping unlocks key Alzheimer’s insights

Clinical trial tests novel stem-cell treatment for Parkinson’s disease

Awareness of rocky mountain spotted fever saves lives

[Press-News.org] Better solutions for making hydrogen may lie just at the surface