Interlayer exciton formation, relaxation, and transport in TMDs van der Waals Heterostructures
2021-04-14
(Press-News.org) TMDs vdW heterostructures generally possess a type-II band alignment which facilitates the formation of interlayer excitons between the constituent monolayers. Manipulation of the interlayer excitons in TMDs vdW heterostructures hold great promise for developing excitonic integrated circuits that serve as the counterpart of electronic integrated circuits, which allows the photons and excitons transforming between each other and thus bridges the optical communication and signal processing at the integrated circuit. Consequently, numerous researches have been carried out in order to get a deep insight of the physical properties of interlayer excitons, including the revealing of their ultrafast formation, long population recombination lifetimes, and the intriguing spin-valley dynamics. These outstanding properties ensure the interlayer excitons with good transport characteristics and may pave the way for their potential applications in efficient excitonic devices. At present, a systematical and all-round overview of these fascinating physics as well as the exciting applications of interlayer excitons in TMDs vdW heterostructures is still lacking and highly desirable for the scientific community.
In a new review paper published in Light Science & Application, a team of scientists, led by Professor Anlian Pan from Key Laboratory for Micro-Nano Physics and Technology of Hunan Province, School of Physics and Electronics, and College of Materials Science and Engineering, Hunan University, China, and co-workers have given a comprehensive description and discussion of the interlayer exciton formation, relaxation, transport, and the potential applications in excitonic optoelectronic devices, based on TMDs vdW heterostructures. An outlook of the future opportunities for interlayer excitons in TMDs based heterostructures was also presented in this review.
Specifically, the content of this review includes four sections. The first section discussed the band alignment, ultrafast charge transfer, and the interlayer exciton formation as well as its fundamental properties in TMDs vdW heterostructures. Moiré interlayer excitons, as a newly emerged research hotspot, were also detailed in this section.
The second section discussed the interlayer exciton relaxation processes including the population recombination dynamics, the intervalley scattering process, and the valley-polarized dynamics in TMDs vdW heterostructures. The recombination lifetimes of interlayer excitons in various TMDs vdW heterostructural systems were summarized, and the role of moiré superlattice on interlayer exciton lifetimes was also discussed in this part.
The third section reviewed the transport behaviors of interlayer excitons in TMDs vdW heterostructures, including the interlayer exciton diffusion without external electric field, the (valley-polarized) interlayer exciton transport with external electric field, and the manipulation of the interlayer exciton transport under various potential landscapes such as potential wells or barriers. Moreover, the influences of the moiré potential and the atomic reconstructions on the interlayer exciton transport were also detailed in this section. These related works offer a novel way to control the exciton transport behavior in potential excitonic devices.
After a detailed description of the interlayer exciton formation, relaxation and transport properties in TMDs vdW heterostructures, the final section of this review gave a brief introduction of the potential applications of interlayer excitons in various excitonic devices such as excitonic switches, lasers, and photodetectors. Quantum light based on moiré-trapped interlayer excitons was also discussed in this part. Nevertheless, the researches on excitonic devices based on interlayer excitons in TMDs vdW heterostructures are still at the early stages. Improving the performance of the already developed excitonic devices for practical applications and exploring more functional excitonic devices like waveguides and modulators are expected in further works. Moreover, the integration of individual excitonic devices such as light sources, switches, modulators, and detectors on a single chip is very likely and highly desirable in future to realize the on-chip integrated optoelectronics based on two-dimensional vdW heterostructures.
INFORMATION:
[Attachments] See images for this press release:
ELSE PRESS RELEASES FROM THIS DATE:
2021-04-14
A wide range of objects, from biological cells to integrated circuits, are tomographically imaged to identify their interior structures. Volumetric reconstruction of the objects' interiors is of practical implications, for instance, quantitative phase imaging of the cells and failure analysis of the circuits to validate their designs. Limiting the tomographic angular range is often desirable to reduce the time of radiation exposure and avoid any devastating effects upon the samples, or even unavoidable due to the structure of objects like in the case of tomosynthesis for mammography. However, tomographic reconstruction from limited angular views is not always welcome in an algorithmic sense, ...
2021-04-14
Research by Australian scientists could pave the way to a new treatment for a currently incurable brain cancer in children called Diffuse Intrinsic Pontine Glioma, or DIPG. Affecting about 20 children in Australia each year, DIPG is a devastating disease with an average survival time of just nine months after diagnosis.
The research, led by scientists at Children's Cancer Institute and published this week in the international journal, Cell Reports, offers an exciting new therapeutic approach for the treatment of DIPG by using a new anti-cancer drug.
The new drug, CBL0137, is an anti-cancer compound developed from the antimalarial drug quinacrine. The researchers found that CBL0137 directly ...
2021-04-14
Intestinal worm infections can leave women in sub-Saharan Africa more vulnerable to sexually-transmitted viral infections, a new study reveals.
The rate and severity of sexually-transmitted viral infections (STI) in the region are very high, as are those of worm infections, which when caught in the intestine can change immunity in other parts of the body.
Researchers at the Universities of Birmingham and Cape Town led an international team which discovered that intestinal worm infection can change vaginal immunity and increase the likelihood of Herpes simplex virus type 2 (HSV-2) infection - the main cause of genital herpes. ...
2021-04-14
Non-alcoholic fatty liver, NAFLD, is associated with several health risks. According to a new registry study led by researchers at Karolinska Institutet in Sweden, NAFLD is linked to a 17-fold increased risk of liver cancer. The findings, published in Hepatology, underscore the need for improved follow-up of NAFLD patients with the goal of reducing the risk of cancer.
"In this study with detailed liver histology data, we were able to quantify the increased risk of cancer associated with NAFLD, particularly hepatocellular carcinoma," says first author, Tracey G. Simon, researcher at the Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, and hepatologist at Massachusetts General Hospital and Harvard ...
2021-04-14
An outbreak of vomiting among dogs has been traced back to a type of animal coronavirus by researchers.
Vets across the country began reporting cases of acute onset prolific vomiting in 2019/20.
The Small Animal Veterinary Surveillance Network (SAVSNet) at the University of Liverpool asked vets for help in collecting data, with 1,258 case questionnaires from vets and owners plus 95 clinical samples from 71 animals.
Based on this data, a team from the universities of Liverpool, Lancaster, Manchester and Bristol identified the outbreak as most likely to ...
2021-04-14
ITHACA, N.Y. - Women's increased agricultural labor during harvest season, in addition to domestic house care, often comes at the cost of their health, according to new research from the Tata-Cornell Institute for Agriculture and Nutrition (TCI).
Programs aimed at improving nutritional outcomes in rural India should account for the tradeoffs that women experience when their agricultural work increases, according to the study, "Seasonal time trade-offs and nutrition outcomes for women in agriculture: Evidence from rural India," which published in the journal Food Policy on March ...
2021-04-14
PHILADELPHIA-- Humans have a uniquely high density of sweat glands embedded in their skin--10 times the density of chimpanzees and macaques. Now, researchers at Penn Medicine have discovered how this distinctive, hyper-cooling trait evolved in the human genome. In a study published today in the Proceedings of the National Academy of Sciences of the USA, researchers showed that the higher density of sweat glands in humans is due, to a great extent, to accumulated changes in a regulatory region of DNA--called an enhancer region--that drives the expression of a sweat gland-building gene, explaining why humans are the sweatiest ...
2021-04-14
PHOENIX, Ariz. -- April 13, 2021 -- Findings of a study by the Translational Genomics Research Institute (TGen), an affiliate of City of Hope, suggest that increasing expression of a gene known as ABCC1 could not only reduce the deposition of a hard plaque in the brain that leads to Alzheimer's disease, but might also prevent or delay this memory-robbing disease from developing.
ABCC1, also known as MRP1, has previously been shown in laboratory models to remove a plaque-forming protein known as amyloid beta (Abeta) from specialized endothelial cells that surround and protect ...
2021-04-14
Compared to newborns conceived traditionally, newborns conceived through in vitro fertilization (IVF) are more likely to have certain chemical modifications to their DNA, according to a study by researchers at the National Institutes of Health. The changes involve DNA methylation--the binding of compounds known as methyl groups to DNA--which can alter gene activity. Only one of the modifications was seen by the time the children were 9 years old.
The study was conducted by Edwina Yeung, Ph.D., and colleagues in NIH's Eunice Kennedy Shriver National Institute of Child Health and Human ...
2021-04-14
A team of UBC Okanagan researchers has determined that the type of fats a mother consumes while breastfeeding can have long-term implications on her infant's gut health.
Dr. Deanna Gibson, a biochemistry researcher, along with Dr. Sanjoy Ghosh, who studies the biochemical aspects of dietary fats, teamed up with chemistry and molecular biology researcher Dr. Wesley Zandberg. The team, who conducts research in the Irving K. Barber Faculty of Science, explored the role of feeding dietary fat to gestating rodents to determine the generational effects of fat exposure on their offspring.
"The goal was to investigate how maternal dietary habits can impact an offspring's gut microbial communities and their associated sugar molecule patterns ...
LAST 30 PRESS RELEASES:
[Press-News.org] Interlayer exciton formation, relaxation, and transport in TMDs van der Waals Heterostructures