PRESS-NEWS.org - Press Release Distribution
PRESS RELEASES DISTRIBUTION

Massive fragment screen points way to new SARS-CoV-2 inhibitors

Experiment with 2533 fragments compounds generates chemical map to future antiviral agents

Massive fragment screen points way to new SARS-CoV-2 inhibitors
2021-04-14
(Press-News.org) New research published in Science Advances provides a template for how to develop directly-acting antivirals with novel modes of action, that would combat COVID-19 by suppressing the SARS-CoV-2 viral infection. The study focused on the macrodomain part of the Nsp3 gene product that SARS-CoV-2 uses to suppress the host cell's natural antiviral response. This part of the virus's machinery, also known as Mac1, is essential for its reproduction: previous studies have shown that viruses that lack it cannot replicate in human cells, suggesting that blocking it with a drug would have the same effect.

The study involved a crystallographic fragment screen of the Nsp3 Mac1 protein by an open science collaboration between researchers from the University of Oxford, the XChem platform at Diamond Light Source, the UK's national synchrotron, and researchers from the QCRG Structural Biology Consortium at the University of California San Francisco. The international effort discovered 234 fragment compounds that directly bind to sites of interest on the surface of the protein, and map out chemical motifs and protein-compound interactions that researchers and pharmaceutical companies can draw on to design compounds that could be developed into antiviral drugs. This work is thus foundational for preparing for future pandemics.

"Robustly identifying this kind of chemical matter for promising and tractable targets like Nsp3 is a first step in rational drug discovery. This is always a long journey fraught with difficulty and failure, but the battery of new structural biology methods that we combined in this study, including fragment screening at Diamond and computational docking at UCSF, are helping to change drug discovery and make it easier to find effective drug candidates," comments Principal Beamline Scientist, Frank von Delft.

These fragments cover a wide range of chemical motifs, and the study lays out the next steps of designing more elaborate molecules that combine the observed themes, synthesizing them and confirming experimentally whether they strongly bind the protein and have a biological effect. The most promising compounds can then be progressed in fully-fledged drug discovery programmes, which includes not only improving the biological potency but also ensuring the final molecule has important drug properties such as easy absorption and minimal side effects.

Most drugs contain a few key components that cause the desired, effect while the rest of the molecule may be important for other reasons, such as solubility, uptake from the gut or how the drug is processed by our metabolism. Traditional high-throughput screening entails testing very large collections of bigger, generally sub-optimal molecules, which are experiment of great complexity.

Instead, fragment screening is an approach for identifying building blocks of the future drug molecule, observing how they interact with the protein under study, contextualizing those interactions, and providing starting points for molecules that directly influence the biology of the protein. This method significantly reduces the number of compounds that need to be screened to find one that really binds, while still informing a broad range of potential molecules. Doing the experiment by structural biology, as implemented at the XChem platform, yields this information directly in 3D, greatly accelerating up the design process and ensuring a far more cost-effective overall experiment.

The UCSF collaborators also used another innovative drug discovery technique, Computational Docking. This deploys computer models and simulations to assess the likely interactions of virtual molecules for favourable interactions with Mac1 and their promise as starting points for drug discovery. The team identified 60 candidates from a virtual library of 20 million molecules, which were then experimentally tested using X-ray crystallography, yielding 20 good hits.

"This is a significantly higher-than-random hit rate, validating the new specific docking methodologies developed by our UCSF colleagues. The high quality structural data of Mac1 that we obtained by X-ray crystallography was essential, but the validation of the approach means that in future, we have additional power for exploring compounds that are not physically available. Overall, this work not only accelerates our ability to validate whether targeting NSP3 Mac1 is an effective way to develop antivirals; it also is hugely valuable in improving the template of methodologies for future inhibitor discovery and development throughout the community of drug discovery," concludes Frank von Delft.

INFORMATION:

For further information please contact Diamond Communications: Lorna Campbell +44 7836 625999 or Isabelle Boscaro-Clarke +44 1235 778130

Science Advances Paper: Fragment binding to the Nsp3 macrodomain of SARS-CoV-2 identified through crystallographic screening and computational docking advances.sciencemag.org/cgi/content/full/7/16/eabf8711/DC1 Published 14 April 2021 10.1126/sciadv.abf8711

Summary: The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) macrodomain within the nonstructural protein 3 counteracts host-mediated antiviral adenosine diphosphate ribosylation signalling. This enzyme is a promising antiviral target because catalytic mutations render viruses nonpathogenic. Here, we report a massive crystallographic screening and computational docking effort, identifying new chemical matter primarily targeting the active site of the macrodomain. Crystallographic screening of diverse fragment libraries resulted in 214 unique macrodomain-binding fragments of 2533 screened. An additional 60 molecules were selected from docking more than 20 million fragments, of which 20 were crystallographically confirmed. X-ray data collection to ultra-high resolution and at physiological temperature enabled assessment of the conformational heterogeneity around the active site. Several crystallographic and docking fragment hits were also confirmed by solution binding using three biophysical techniques (differential scanning fluorimetry, homogeneous time-resolved fluorescence, and isothermal titration calorimetry). The 234 fragment structures presented explore a wide range of chemotypes and provide starting points for development of potent SARS-CoV-2 macrodomain inhibitors

Authors: Marion Schuller, Galen J. Corey, Stefan Gahbauer, Daren Fearon, Taiasean Wu, Roberto Efraín Díaz, Iris D. Young, Luan Carvalho Martins, Dominique H. Smith, Ursula Schulze-Gahmen, Tristan W. Owens, Ishan Deshpande, Gregory E. Merz, Aye C. Thwin, Justin T. Biel, Jessica K. Peters, Michelle Moritz, Nadia Herrera, Huong T. Kratochvil, QCRG Structural Biology Consortium, Anthony Aimon, James M. Bennett, Jose Brandao Neto, Aina E. Cohen, Alexandre Dias, Alice Douangamath, Louise Dunnett, Oleg Fedorov, Matteo P. Ferla, Martin R. Fuchs, Tyler J. Gorrie-Stone, James M. Holton, Michael G. Johnson, Tobias Krojer, George Meigs, Ailsa J. Powell, Johannes Gregor Matthias Rack, Victor L. Rangel, Silvia Russi, Rachael E. Skyner, Clyde A. Smith, Alexei S. Soares, Jennifer L. Wierman, Kang Zhu, Peter O'Brien, Natalia Jura, Alan Ashworth, John J. Irwin, Michael C. Thompson, Jason E. Gestwicki, Frank von Delft, Brian K. Shoichet, James S. Fraser, Ivan Ahel

About Diamond Light Source: W: http://www.diamond.ac.uk Twitter: @DiamondLightSou Diamond Light Source provides industrial and academic user communities with access to state-of-the-art analytical tools to enable world-changing science. Shaped like a huge ring, it works like a giant microscope, accelerating electrons to near light speeds, to produce a light 10 billion times brighter than the Sun, which is then directed off into 33 laboratories known as 'beamlines'. In addition to these, Diamond offers access to several integrated laboratories including the world-class Electron Bio-imaging Centre (eBIC) and the Electron Physical Science Imaging Centre (ePSIC).

Diamond serves as an agent of change, addressing 21st century challenges such as disease, clean energy, food security and more. Since operations started, more than 14,000 researchers from both academia and industry have used Diamond to conduct experiments, with the support of approximately 760 world-class staff. More than 10,000 scientific articles have been published by our users and scientists. Funded by the UK Government through the Science and Technology Facilities Council (STFC), and by the Wellcome Trust, Diamond is one of the most advanced scientific facilities in the world, and its pioneering capabilities are helping to keep the UK at the forefront of scientific research.


[Attachments] See images for this press release:
Massive fragment screen points way to new SARS-CoV-2 inhibitors

ELSE PRESS RELEASES FROM THIS DATE:

New in the Hastings Center Report, March-April 2021

2021-04-14
"Family clustering is a confirmed phenomenon associated with Covid-19, and harrowing stories of this disease ravaging families continue to be reported," a new article explains in the March-April issue of the Hastings Center Report. In one extreme example, 28 extended family members in California reportedly tested positive for Covid-19. Two of the family members who quarantined together required hospitalization, and one of them died from the infection. In family clustering cases, multiple loved ones may suffer from the symptoms of Covid-19 and be hospitalized, in quarantine, or recovering; and family ...

Researchers map brain regions responsible for intoxicating effects of alcohol

2021-04-14
The slurred speech, poor coordination, and sedative effects of drinking too much alcohol may actually be caused by the breakdown of alcohol products produced in the brain, not in the liver as scientists currently think. That is the finding of a new study led by researchers from the University of Maryland School of Medicine (UMSOM) and the National Institute on Alcohol Abuse and Alcoholism. It was published recently in the journal Nature Metabolism and provides new insights into how alcohol may affect the brain and the potential for new treatments to treat alcohol misuse. It is well known that the liver is the major organ ...

Photonic MEMS switches going commercial

Photonic MEMS switches going commercial
2021-04-14
One of the technical challenges the current data revolution faces is finding an efficient way to route the data. This task is usually performed by electronic switches, while the data itself is transferred using light confined in optical waveguides. For this reason, conversion from an optical to an electronic signal and back-conversion are required, which costs energy and limits the amount of transferable information. These drawbacks are avoidable with a full optical switch operation. One of the most promising approaches is based on microelectromechanical systems (MEMS), thanks ...

How to build a city that prioritizes public health

How to build a city that prioritizes public health
2021-04-14
Most people by now have memorized the public health guidelines meant to help minimize transmission of COVID-19: wash your hands, wear a mask, keep six feet apart from others. That part is easy. What some may not realize is that upholding these guidelines in certain urban areas can present new challenges. For example, how are you supposed to stay six feet apart from other people when the standard width of a sidewalk is only four feet? What do you do when you want to cross an intersection that requires pressing a button to activate the pedestrian signal, but you are avoiding touching any surfaces? The COVID-19 pandemic has drastically altered the way individuals interact with other people and their environment, but some public health guidelines meant to protect ...

RNA holds the reins in bacteria: U-M researchers observe RNA controlling protein synthesis

RNA holds the reins in bacteria: U-M researchers observe RNA controlling protein synthesis
2021-04-14
To better understand how RNA in bacteria gives rise to protein--and along the way, target these processes in the design of new antibiotics--researchers are turning their attention to the unique way this process happens in bacteria. In eukaryotic cells, transcription (the process by which information in a DNA strand is copied into messenger RNA) and translation (the process by which a protein is synthesized by the ribosome from the mRNA) are two successive steps. In bacteria, they occur simultaneously: As the RNA is being synthesized by RNA polymerase, the ribosome comes in to make the proteins. This synchronicity ...

New evidence regarding emerald production in Roman Egypt coming from Wadi Sikait

New evidence regarding emerald production in Roman Egypt coming from Wadi Sikait
2021-04-14
"New evidence of the importance of the Roman/Byzantine Mons Smaragdus settlement within the emerald mining network" A new paper published in the END ...

How to gain a sense of well-being, free and online

2021-04-14
In 2018, when Professor Laurie Santos introduced her course "Psychology and the Good Life," a class on the science of happiness, it became the most popular in the history of Yale, attracting more than 1,200 undergraduate enrollees that first semester. An online course based on those teachings became a global phenomenon. By latest count, 3.38 million people have enrolled to take the free Coursera.org course, called "The Science of Well Being." But the popularity of the course posed an interesting question. Does taking the course and participating in homework assignments -- which include nurturing social connections, compiling a gratitude list, and meditation -- really help improve a sense of well-being? The answer is yes, according to two new studies that measured the psychological impact ...

New method measures super-fast, free electron laser pulses

New method measures super-fast, free electron laser pulses
2021-04-14
LOS ALAMOS, N.M., April 14, 2021--New research shows how to measure the super-short bursts of high-frequency light emitted from free electron lasers (FELs). By using the light-induced ionization itself to create a femtosecond optical shutter, the technique encodes the electric field of the FEL pulse in a visible light pulse so that it can be measured with a standard, slow, visible-light camera. "This work has the potential to lead to a new online diagnostic for FELs, where the exact pulse shape of each light pulse can be determined. That information can help both the end-user and the accelerator scientists," said Pamela Bowlan, Los Alamos National Laboratory's lead researcher on the project. The paper was published April 12, ...

New research provides insight into COVID-19 vaccine reluctancy among social media users

2021-04-14
New research has found that the most reliable indicators of willingness to be vaccinated against SARS-CoV-2, the virus that causes COVID-19, are rejection of conspiracy suspicions about COVID-19 and a positive attitude towards vaccines in general. The study by King's College London and the University of Bristol is published in the leading peer-reviewed journal Psychological Medicine. The researchers' analysis was based on a large representative sample survey carried out in November-December 2020. They looked at a range of factors that previous ...

Using sound waves to make patterns that never repeat

Using sound waves to make patterns that never repeat
2021-04-14
Mathematicians and engineers at the University of Utah have teamed up to show how ultrasound waves can organize carbon particles in water into a sort of pattern that never repeats. The results, they say, could result in materials called "quasicrystals" with custom magnetic or electrical properties. The research is published in Physical Review Letters. "Quasicrystals are interesting to study because they have properties that crystals do not have," says Fernando Guevara Vasquez, associate professor of mathematics. "They have been shown to be stiffer than similar periodic or disordered materials. They can also conduct electricity, ...

LAST 30 PRESS RELEASES:

AMS Science Preview: Hawaiian climates; chronic pain; lightning-caused wildfires

Researchers advance detection of gravitational waves to study collisions of neutron stars and black holes

Automated machine learning robot unlocks new potential for genetics research

University of Toronto scientists appointed as GSK chairs will advance drug delivery research and vaccine education tools for healthcare professionals

Air pollution and depression linked with heart disease deaths in middle-aged adults

More efficient molecular motor widens potential applications

Robotic nerve ‘cuffs’ could help treat a range of neurological conditions

Researchers identify targets in the brain to modulate heart rate and treat depressive disorders

Findings of large-scale study on 572 Asian families supports gene-directed management of BRCA1 and BRCA2 gene carriers in Singapore

Many children with symptoms of brain injuries and concussions are missing out on vital checks, national US study finds

Genetic hope in fight against devastating wheat disease

Mutualism, from biology to organic chemistry?

POSTECH Professor Yong-Young Noh resolves two decades of oxide semiconductor challenges, which Is published in prestigious journal Nature

Could fishponds help with Hawaiʻi’s food sustainability?

International network in Asia and Europe to uncover the mysteries of marine life

Anthropologist documents how women and shepherds historically reduced wildfire risk in Central Italy

Living at higher altitudes in India linked to increased risk of childhood stunting

Scientists discover a new signaling pathway and design a novel drug for liver fibrosis

High-precision blood glucose level prediction achieved by few-molecule reservoir computing

The importance of communicating to the public during a pandemic, and the personal risk it can lead to

Improving health communication to save lives during epidemics

Antimicrobial-resistant hospital infections remain at least 12% above pre-pandemic levels, major US study finds

German study finds antibiotic use in patients hospitalised with COVID-19 appears to have no beneficial effect on clinical outcomes

Targeting specific protein regions offers a new treatment approach in medulloblastoma

$2.7 million grant to explore hypoxia’s impact on blood stem cells

Cardiovascular societies propel plans forward for a new American Board of Cardiovascular Medicine

Hebrew SeniorLife selected for nationwide collaborative to accelerate system-wide spread of age-friendly care for older adults

New tool helps identify babies at high-risk for RSV

Reno/Sparks selected to be part of Urban Heat Mapping Campaign

Advance in the treatment of acute heart failure identified

[Press-News.org] Massive fragment screen points way to new SARS-CoV-2 inhibitors
Experiment with 2533 fragments compounds generates chemical map to future antiviral agents