(Press-News.org) Since the 1970s, the Standard Model of Physics has served as the basis from which particle physics are investigated. Both experimentalists and theoretical physicists have tested the Standard Model's accuracy, and it has remained the law of the land when it comes to understanding how the subatomic world behaves.
This week, cracks formed in that foundational set of assumptions. Researchers of the "Muon g-2" collaboration from the Fermi National Accelerator Laboratory (FNAL) in the United States published further experimental findings that show that muons--heavy subatomic relatives of electrons--may have a larger "magnetic moment" than earlier Standard Model estimates had predicted, indicating that an unknown particle or force might be influencing the muon. The work builds on anomalous results first uncovered 20 years ago at Brookhaven National Laboratory (BNL), and calls into question whether the Standard Model needs to be rewritten.
Meanwhile, researchers in Germany have used Europe's most powerful high-performance computing (HPC) infrastructure to run new and more precise lattice quantum chromodynamics (lattice QCD) calculations of muons in a magnetic field. The team found a different value for the Standard Model prediction of muon behaviour than what was previously accepted. The new theoretical value is in agreement with the FNAL experiment, suggesting that a revision of the Standard Model is not needed. The results are now published in Nature.
The team primarily used the supercomputer JUWELS at the Jülich Supercomputing Centre (JSC), with the computational time provided by the Gauss Centre for Supercomputing (GCS) as well at JSC's JURECA system, along with extensive computations performed at the other two GCS sites--on Hawk at the High-Performance Computing Center Stuttgart (HLRS) and on SuperMUC-NG at the Leibniz Supercomputing Centre (LRZ).
Both the experimentalists and theoretical physicists agreed that further research must be done to verify the results published this week. One thing is clear, however: the HPC resources provided by GCS were essential for the scientists to achieve the precision necessary to get these groundbreaking results.
"For the first time, lattice results have a precision comparable to these experiments. Interestingly our result is consistent with the new FNAL experiment, as opposed to previous theory results, that are in strong disagreement with it," said Prof. Kalman Szabo, leader of the Helmholtz research group, "Relativistic Quantum Field Theory" at JSC and co-author of the Nature publication. "Before deciding the fate of the Standard Model, one has to understand the theoretical differences, and new lattice QCD computations are inevitable for that."
Minor discrepancies, major implications
When BNL researchers recorded unexplained muon behaviour in 2001, the finding left physicists at a loss--the muon, a subatomic particle 200 times heavier than an electron, showed stronger magnetic properties than predicted by the Standard Model of Physics. While the initial finding suggested that muons may be interacting with previously unknown subatomic particles, the results were still not accurate enough to definitely claim a new finding.
Over the next 20 years, heavy investments in new, hyper-sensitive experiments done at particle accelerator facilities as well as increasingly sophisticated approaches based in theory have sought to confirm or refute the BNL group's findings. During this time, a research group led by the University of Wuppertal's Prof. Zoltan Fodor, another co-author of the Nature paper, was progressing with big steps in lattice QCD simulations on the supercomputers provided by GCS. "Though our results on the muon g-2 are new, and have to be thoroughly scrutinized by other groups, we have a long record of computing various physical phenomena in quantum chromodynamics." said Prof. Fodor. "Our previous major achievements were computing the mass of the proton, the proton-neutron mass difference, the phase diagram of the early universe and a possible solution for the dark matter problem. These paved the way to our most recent result."
Lattice QCD calculations allow researchers to accurately plot subatomic particle movements and interactions with extremely fine time resolution. However, they are only as precise as computational power allows--in order to perform these calculations in a timely manner, researchers have had to limit some combination of simulation size, resolution, or time. As computational resources have gotten more powerful, researchers have been able to do more precise simulations.
"This foundational work shows that Germany's world-class HPC infrastructure is essential for doing world-class science in Europe", said Prof. Thomas Lippert, Director of the Jülich Supercomputing Centre, Professor for Quantum Computing and Modular Supercomputing at Goethe University Frankfurt, current Chairman of the GCS Board of Directors, and also co-author of the Nature paper. "The computational resources of GCS not only play a central role in deepening the discourse on muon measurements, but they help European scientists and engineers become leaders in many scientific, industrial, and societal research areas."
While Fodor, Lippert, Szabo, and the team who published the Nature paper currently use their calculations to cool the claims of physics beyond the Standard Model, the researchers are also excited to continue working with international colleagues to definitively solve the mystery surrounding muon magnetism. The team anticipates that even more powerful HPC systems will be necessary to prove the existence of physics beyond the Standard Model. "The FNAL experiment will increase the precision by a factor of four in two years. We theorists have to keep up with this pace if we want to fully exploit the new physics discovery potential of muons." Szabo said.
INFORMATION:
The DNA molecule is not naked in the nucleus. Instead, it is folded in a very organized way by the help of different proteins to establish a unique spatial organization of the genetic information. This 3D spatial genome organization is fundamental for the regulation of our genes and has to be established de novo by each individual during early embryogenesis. Researchers at the MPI of Immunobiology and Epigenetics in Freiburg in collaboration with colleagues from the Friedrich Mischer Institute in Basel now reveal a yet unknown and critical role of the protein HP1a in the 3D genome re-organization after fertilisation. The study published in the scientific journal Nature identifies HP1a as an epigenetic regulator that is involved in establishing ...
Leesburg, VA, April 15, 2021--A Scientific E-Poster to be presented at the 2021 ARRS Virtual Annual Meeting found that as the United States Medical Licensing Examination (USMLE) Step 1 transitions from a numerical score to pass or fail--as early as January 2022--radiology residency program directors will likely rely on USMLE Step 2 Clinical Knowledge (CK) scores as an objective and standardized metric to screen applicants.
"However," wrote lead investigator Rebecca Zhang of the University of Maryland School of Medicine in Baltimore, "program directors remain unsure whether they will ...
Leesburg, VA, April 15, 2021--A Scientific E-Poster to be presented at the 2021 ARRS Virtual Annual Meeting found that in the setting of a high pretest probability of COVID-19 infection or with a quick turnaround of the rapid real-time reverse transcriptase-polymerase chain reaction (RT-PCR) COVID-19 test, a chest x-ray (CXR) scoring system may be used prospectively to predict patient outcomes.
"We developed an accurate and reliable tool for classifying COVID-19 severity, which can be used both at the attending chest radiologist and junior resident level. This study identifies the laboratory, clinical and radiographic data that predict important patient outcomes such as death, intubation, and the need for chronic renal replacement ...
Scientists of Tomsk Polytechnic University has conducted research on the 35ClO2 isotope and developed a mathematical model and software, which allow predicting characteristics by 10 folds more accurate than already known results. The research work was conducted by a research team of Russian, German and Swiss scientists. The research findings are published in the Physical Chemistry Chemical Physics (IF: 3,4; Q1) academic journal and listed as one of the best articles.
The ClO2 molecule is extremely important for medicine and biophysics, as well as for the Earth atmosphere. It is used in medicine for disinfection and ...
A study published this week in The Lancet Public Health examines how we can use our income assistance systems to address drug use and drug-related harm.
The study, led by University of British Columbia (UBC) medical sociologist Dr. Lindsey Richardson and conducted at the British Columbia Centre on Substance Use (BCCSU), tests whether varying the timing and frequency of income assistance payments can mitigate drug-related harms linked to the existing once-monthly payment schedule that is common across North America and Europe. Monthly synchronized income assistance payments have long been linked to considerable and costly increases in drug use and resulting harm, including overdose, hospital admission, treatment interruption and emergency service calls.
The study finds that varying when ...
Tokyo, Japan - A team of scientists led by the Institute of Biomaterials and Bioengineering at Tokyo Medical and Dental University (TMDU) have created novel molecules that prevent human immunodeficiency virus (HIV) particles from attacking immune cells. This is accomplished by injecting compounds mimicking the protein the virus usually uses to enter the cells. This work may lead to new treatments for HIV that may be more effective at stopping the proliferation of the virus with fewer side effects.
HIV is a very dangerous pathogen because it attacks the very immune cells, including T helper cells, that are needed for the body to fight back. An HIV particle first ...
Researchers from Kumamoto University (Japan) have found that the anti-diabetic drug metformin significantly prolongs the survival of mice in a model that simulates the pathology of non-diabetic chronic kidney disease (ND-CKD) by ameliorating pathological conditions like reduced kidney function, glomerular damage, inflammation and fibrosis. Metformin's mechanism is different from existing therapeutics which only treat symptoms, such as the blood pressure drug losartan, so the researchers believe that a combination of these medications at low dose will be highly beneficial.
CKD (chronic kidney disease) ...
It is often said that before air travel our skies were bluer yet how, in the 21st century, could we ever know what light and colors were like one hundred years ago? Recently, a group of researchers from EPFL's Audiovisual Communications Laboratory, in the School of Computer and Communication Sciences (IC), had a unique opportunity to try to find out.
Normally hidden treasures locked away in the vaults of a handful of museums, the researchers were offered access to some of the original photographic plates and images of the scientist and inventor Gabriel Lippmann, who won the 1908 Nobel Prize in physics for his method of reproducing colors in photography.
In a paper just published in the Proceedings of the National ...
Research led by the University of Kent's Durrell Institute of Conservation and Ecology (DICE) has found that the personification of animals in recent wildlife documentaries leads to significant misinformation and creates problems for public understanding of wider conservation.
In a research paper published by People and Nature, Professor Keith Somerville (DICE), Dr Amy Dickman, Dr Paul Johnson (both from the Wildlife Conservation Research Unit, University of Oxford), and Professor Adam Hart (University of Gloucestershire) argue that the portrayal of charismatic animals in nature films, while ...
"This enables us to contrast the subjective perception of stress with an objective measurement method and compare the two," explains Nina Minkley. Contrary to expectations, it turned out that the effort invested in the task does not increase with its difficulty, nor does the stress level. The study was featured in the journal Frontiers in Education on 12. April 2021.
Simple questionnaire surveys criticised
To date, the stress experience of students has mostly been surveyed with questionnaires. But this approach has been criticised, because many factors have an effect on one's own perception that have nothing to do with the task. "For example, women often report higher stress levels ...