(Press-News.org) When temperatures drop below zero degrees Celsius, water turns to ice. But does everything actually freeze if you just cool it down enough? In the classical picture, matter inherently becomes solid at low temperatures. Quantum mechanics can, however, break this rule. Therefore, helium gas, for example, can become liquid at -270 degrees, but never solid under atmospheric pressure: There is no helium ice.
The same is true for the magnetic properties of materials: at sufficiently low temperatures, the magnetic moments known as 'spins', for example, arrange themselves in such a way that they are oriented opposite/antiparallel to their respective neighbors. One can think of this as arrows pointing alternating up and down along a chain or in a checkerboard pattern. It gets frustrating when the pattern is based on triangles: While two spins can align in opposite directions, the third is always parallel to one of them and not to the other - no matter how you turn it.
For this problem, quantum mechanics suggests the solution that the orientation and bond of two spins are not rigid, but the spins fluctuate. The state formed is called a quantum spin liquid in which the spins constitute a quantum mechanically entangled ensemble. This idea was proposed almost fifty years ago by the American Nobel laureate Phil W. Anderson (1923-2020). After decades of research, only a handful of real materials remain in the search for this exotic state of matter. As a particularly promising "candidate" a triangular lattice in a complex organic compound was considered, in which no magnetic order with a regular up-down pattern could be observed, even at extremely low temperatures. Was this the proof that quantum spin liquids really exist?
One problem is that it is extremely challenging to measure electron spins down to such extremely low temperatures, especially along different crystal directions and in variable magnetic fields. All previous experiments have been able to probe quantum spin liquids only more or less indirectly, and their interpretation is based on certain assumptions and models. Therefore, a new method of broadband electron spin resonance spectroscopy has been developed over many years at the Institute of Physics 1 at the University of Stuttgart.
Using on-chip microwave lines, one can directly observe the properties of the spins down to a few hundredths of a degree above absolute zero. In doing so, the researchers found that the magnetic moments do not arrange themselves in the up-down pattern of a typical magnet, nor do they form a dynamic state resembling a liquid. "In fact, we observed the spins in spatially separated pairs. Thus, our experiments have shattered the dream of a quantum spin liquid for now, at least for this compound," summarizes Prof. Martin Dressel, head of the Institute of Physics 1.
But even though the pairs did not fluctuate as hoped, this exotic ground state of matter has lost none of its fascination for the physicists. "We want to investigate whether quantum spin liquids might be detectable in other triangular lattice compounds or even in completely different systems such as honeycomb structures", Dressel outlines the next steps. However, it could also be that such a disordered, dynamic state simply does not exist in nature. Perhaps every kind of interaction leads in one way or another to a regular arrangement if the temperature is low enough. Spins just like to pair up.
INFORMATION:
Original publication:
Björn Miksch, Andrej Pustogow, Mojtaba Javaheri Rahim, Andrey A. Bardin, Kazushi Kanoda, John A. Schlueter, Ralph Hübner, Marc Scheffler, Martin Dressel: Gapped magnetic ground state in quantum-spin-liquid candidate κ-(BEDT-TTF)2Cu2(CN)3, Science, 16. April 2021: Vol. 372, Issue 6539, eabc6363, doi: 10.1126/science.abc6363, https://science.sciencemag.org/content/372/6539/276/tab-article-info
Snow cover in the Alps has been melting almost three days earlier per decade since the 1960s. This trend is temperature-related and cannot be compensated by heavier snowfall. By the end of the century, snow cover at 2,500 meters could disappear a month earlier than today, as simulations by environmental scientists at the University of Basel demonstrate.
Global warming demands huge adjustments in tourism, hydropower generation and agriculture in alpine areas. But the fauna and flora also have to adapt to rising temperatures. By the end of the century, ...
If you are exposed to silica (quartz) dust at work - e.g. from working with concrete and granite - you have a greater risk of certain types of rheumatic disease. This is shown by results from Aarhus University and Aarhus University Hospital, which have just been published in the International Journal of Epidemiology.
Exposure to silica dust at work, which is the case especially at workplaces within construction and industry, may lead to autoimmune rheumatic diseases. Photo: Unsplash.
Exposure to silica dust at work, which is the case especially at workplaces within construction and industry, may lead to autoimmune rheumatic diseases. Photo: Unsplash.
As the research results from Aarhus University show, exposure to ...
The leading newspapers in two nuclear waste management forerunner countries, Finland and France, fulfil their "watchdog" roles in highly distinct ways. The Finnish Helsingin Sanomat (HS) tends to reproduce government and industry framings, whereas Le Monde cherishes its role as an independent critic of the powers that be. These differences reflect distinct cultural, political and media traditions in the two countries.
"The critical watchdog model works in a liberal democracy such as the French, based on mistrust towards the governing elites. But would it backfire in Finland by undermining the very institutional trust that the Nordic democracies have been built upon throughout history?" asks the first author of the article, Research Fellow Markku Lehtonen from the Department of Humanities ...
A new study has shown that underweight and overweight women are at a significantly higher risk of experiencing recurrent miscarriages compared to those of average weight.
A research team led by the University of Southampton assessed the link between women's lifestyle and risk of recurrent pregnancy loss, defined as women having two or more consecutive early miscarriages. The systematic review and meta-analysis study has been published in the journal Scientific Reports.
Miscarriage is the most common complication of early pregnancy, affecting 15 - 20% of all pregnancies. Recurrent pregnancy loss is a complex disease and although often attributed to numerous medical factors and lifestyle influences, the cause is deemed "unexplained" ...
Tokyo, Japan - Leukemias are debilitating cancers of the hematopoietic or blood-forming cells of the bone marrow. Now, researchers at Tokyo Medical and Dental University (TMDU) describe an ingenious strategy against chronic myelomonocytic leukemia (CMML) wherein an antibody-drug conjugate (ADC) comprising a cytotoxic drug payload linked to an antibody that selectively targets specific cell lines effectively blocks malignant cell proliferation at source.
Hematopoietic stem and progenitor cells (HSPCs) continually differentiate into the entire panoply of blood cells, as many as 500 ...
Since fast radio bursts (FRBs) were first discovered over a decade ago, scientists have puzzled over what could be generating these intense flashes of radio waves from outside of our galaxy. In a gradual process of elimination, the field of possible explanations has narrowed as new pieces of information are gathered about FRBs - how long they last, the frequencies of the radio waves detected, and so on.
Now, a team led by McGill University researchers and members of Canada's CHIME Fast Radio Burst collaboration has established that FRBs include radio waves at frequencies lower than ever detected before, a discovery that redraws the boundaries for theoretical astrophysicists trying to put their finger on the source of FRBs.
"We ...
WHAT:
The experimental antiviral drug MK-4482 significantly decreased levels of virus and disease damage in the lungs of hamsters treated for SARS-CoV-2 infection, according to a new study from National Institutes of Health scientists. SARS-CoV-2 is the virus that causes COVID-19. MK-4482, delivered orally, is now in human clinical trials. Remdesivir, an antiviral drug already approved by the U.S. Food and Drug Administration for use against COVID-19, must be provided intravenously, making its use primarily limited to clinical settings.
In their study, published in the journal ...
Artificial intelligence (AI) has sped up the process of detecting flooded buildings immediately after a large-scale flood, allowing emergency personnel to direct their efforts efficiently. Now, a research group from Tohoku University has created a machine learning (ML) model that uses news media photos to identify flooded buildings accurately within 24 hours of the disaster.
Their research was published in the journal Remote Sensing on April 5, 2021.
"Our model demonstrates how the rapid reporting of news media can speed up and increase the accuracy of damage mapping activities, accelerating ...
Collaborative research of the University of Jyvaskyla and Natural Research Institute Finland presents new evidence of the effects of enriched rearing on well-being of aquaculture fishes. The research demonstrates that stone enrichments that have been previously conditioned in lake water significantly improve survival of fish compared to clean stones. Also a higher number of stones has a similar positive effect. The results have practical implications for prevention of aquaculture diseases. The study was published in Antibiotics in March 2021.
The volume of aquaculture is continuously increasing. Parasitic diseases represent a significant threat to farmed fishes and ecological solutions to minimize use of medication are being sought.
Enriched rearing, where rearing tanks ...
A survey of star formation activity in the Orion Nebula Cluster found similar mass distributions for newborn stars and dense gas cores, which may evolve into stars. Counterintuitively, this means that the amount of gas a core accretes as it develops, and not the initial mass of the core, is the key factor in deciding the final mass of the produced star.
The Universe is populated with stars of various masses. Dense cores in clouds of interstellar gas collapse under their own gravity to form stars, but what determines the final mass of the star remains an ...