PRESS-NEWS.org - Press Release Distribution
PRESS RELEASES DISTRIBUTION

Fast brainwave oscillations identify and localize epileptic brain

Fast brainwave oscillations identify and localize epileptic brain
2021-04-20
(Press-News.org) Professor Bin He's team at Carnegie Mellon University, in collaboration with the Mayo Clinic, has discovered that fast oscillations in scalp-recorded electroencephalography can pinpoint brain tissues responsible for epileptic seizures. The collaborative research, recently published in the Proceedings of the National Academy of Sciences (PNAS), leverages noninvasive EEG technology along with the development of a novel machine learning algorithm to automatically identify and delineate concurrent high-frequency oscillations and epileptiform spikes, a key link related to epilepsy. In the near future, these findings may be harnessed to rethink imaging and treatment options for epilepsy patients.

More than 70 million people across the globe are affected by epilepsy, one of the most common neurological disorders. For people with epilepsy, brain activity becomes abnormal, causing seizures or unusual behavior, sensations, and sometimes loss of awareness. The incurable condition affects men and women of all ages, races, and ethnic backgrounds.

While medication is an effective treatment option for some, nearly one-third of epileptic patients do not respond well to medication. Many of these patients undergo surgical removal of the epileptic tissues to stop their seizures, if such epileptic foci can be identified in the brain and safely removed. The go-to clinical process to observe and localize epileptogenic brain activity, known as intracranial electroencephalography (iEEG), is invasive and involves drilling holes in the skull or removing a part of the skull, to place electrodes on the brain. Furthermore, iEEG recording is also time-consuming, lasting from days to weeks, until a spontaneous seizure occurs and can be monitored.

New groundbreaking research led by Bin He, professor of biomedical engineering at Carnegie Mellon University, in collaboration with the Mayo Clinic, combines clinical application and engineering innovation to present a safe, noninvasive, cost-effective, and quicker imaging option for patients with epilepsy.

Other researchers have attempted noninvasive EEG studies; however, He's work is unique in that it discovers and automatically records a novel link between high-frequency oscillations (HFOs) and epileptiform spikes. The link, in turn, identifies a unique biomarker by which the epileptogenic brain can be delineated and localized, thus offering extremely desirable means for noninvasive management of epilepsy, as well as aiding with treatment options.

"Over the years, HFOs have been identified as a promising biomarker for localizing epileptogenic brain tissues and potentially guiding neurosurgery correlated with the origin of seizures," explained He. "Challenges exist in that there are both physiological and pathological HFOs. Only pathological HFOs are tagged with epilepsy and helpful for clinical use, and unfortunately, differentiating between the two is highly-complicated using current practices and methods. Our team hypothesized and proved through morphological and source imaging evidence that pathological HFOs can be identified by the concurrence of HFOs and epileptiform spikes, all recorded noninvasively over the scalp."

He's collaborative study observed and recorded 25 patients with temporal epilepsy. Using a novel technology, the group was able to automatically identify the scalp recorded HFOs consistently cooccurring with epileptiform spikes and localize the corresponding cortical sources generating these events using source imaging techniques. In tandem, they also further validated the clinical value of using the identified pathological HFOs in determining the underlying epileptic tissues responsible for generating seizures, in comparison to clinical findings defined by epileptologists, and the surgical outcomes in the patients. He's results demonstrated significantly improved performance of the new method with comparison to the conventional spike imaging method.

Coming full circle, these findings suggest that concurrent HFOs and spikes reciprocally discriminate pathological activities, providing a translational tool for noninvasive presurgical diagnosis and postsurgical evaluation in vulnerable epileptic patients.

"This technology, if it advances to hospitals and medical centers, could be lifechanging," said He. "It is completely safe and noninvasive, and it occurs over a much shorter timeframe. It is a truly exciting development that brings with it significant societal and financial implications."

Looking ahead, the desire is to expand clinical studies and validate in more patients, with the eventual goal of having the technology adopted worldwide, across the healthcare industry.

INFORMATION:

This work was funded in part by the National Institute of Neurological Disorders and Stroke, National Institute of Biomedical Imaging and Bioengineering, National Institute of Mental Health, and National Center for Complementary and Integrative Health. Zhengxiang Cai was the first author, with other co-authors of Abbas Sohrabpour, Haiteng Jiang, Shuai Ye, Gregory Worrell, Boney Joseph, and Benjamin Brinkmann.


[Attachments] See images for this press release:
Fast brainwave oscillations identify and localize epileptic brain

ELSE PRESS RELEASES FROM THIS DATE:

Understanding our restoring force

Understanding our restoring force
2021-04-20
An expansive project led by Michigan State University's Lars Brudvig is examining the benefits, and limits, of environmental restoration on developed land after humans are done with it. Experts estimate there are up to 17 million square miles of land worldwide that have been altered by humans -- through cultivation say -- and then abandoned. That's more than four times the size of the continental United States. Once humans change a landscape, their impacts linger long after they've moved on. However, humans can heal some of that damage by working to restore the land to its natural state. ...

Filling federal oversight gaps

Filling federal oversight gaps
2021-04-20
The familiar murkiness of waters in the Gulf of Mexico can be off-putting for beachgoers visiting Galveston Island. Runoff from the Mississippi River makes its way to local beaches and causes downstream water to turn opaque and brown. Mud is one factor, and river runoff is another. However, concern tends to ratchet up a notch when pollution enters the river runoff discussion on a national scale, specifically when smaller, navigable intrastate bodies of water push pollution into larger interstate waters often involved in commerce (i.e. the Mississippi River, Great Lakes, Ohio River). A recently published research analysis in the journal Science, co-authored by Victor Flatt, Dwight Olds Chair in Law at the University of Houston Law ...

Research brief: Improving rug efficacy against prostate cancer and related bone growths

2021-04-20
Published in the Advanced Functional Materials, University of Minnesota researcher Hongbo Pang led a cross-institutional study on improving the efficacy of nucleotide-based drugs against prostate cancer and bone metastasis. In this study, Pang and his research team looked at whether liposomes, when integrated with the iRGD peptide, will help concentrate antisense oligonucleotides (ASOs) into primary prostate tumors and its bone metastases. Liposomes are used as a drug carrier system, and ASOs are a type of nucleotide drug. More importantly, they investigated whether this system helps more drugs across the vessel wall and deeply into the tumor tissue. This is critical because, although nucleotide drugs offer unique advantages ...

'Dead clades walking': Fossil record provides new insights into mass extinctions

Dead clades walking: Fossil record provides new insights into mass extinctions
2021-04-20
Mass extinctions are known as times of global upheaval, causing rapid losses in biodiversity that wipe out entire animal groups. Some of the doomed groups linger on before going extinct, and a team of scientists found these "dead clades walking" (DCW) are more common and long-lasting than expected. "Dead clades walking are a pattern in the fossil record where some animal groups make it past the extinction event, but they also can't succeed in the aftermath," said Benjamin Barnes, a doctoral student in geosciences at Penn State. "It paints the pictures of a group consigned to an eventual extinction." The scientists found 70 of the 134 orders of ancient sea-dwelling invertebrates they examined could ...

Predicting the next pandemic virus is harder than we think

Predicting the next pandemic virus is harder than we think
2021-04-20
The observation that most of the viruses that cause human disease come from other animals has led some researchers to attempt "zoonotic risk prediction" to second-guess the next virus to hit us. However, in an Essay publishing April 20th in the open access journal PLOS Biology, led by Dr Michelle Wille at the University of Sydney, Australia with co-authors Jemma Geoghegan and Edward Holmes, it is proposed that these zoonotic risk predictions are of limited value and will not tell us which virus will cause the next pandemic. Instead, we should target the human-animal interface for intensive viral surveillance. So-called zoonotic viruses ...

Sexual receptivity and rejection may be orchestrated by the same brain region

Sexual receptivity and rejection may be orchestrated by the same brain region
2021-04-20
In many species, including humans and mice, the fluctuating levels of the hormones progesterone and estrogen determine whether the female is fertile or not. And in the case of mice, whether she's sexually receptive or not. The change in receptivity is striking. Female mice shift from accepting sexual partners to aggressively rejecting them across a cycle of six short days. How can the female reproductive hormones bring about such a radical behavioural change? When searching for an explanation, the team of Susana Lima, a principal investigator at the Champalimaud Centre for the Unknown in Portugal, came across an intriguing discovery. "Our experiments revealed that a brain area important for female receptivity, called the VMH (ventromedial ...

'Undruggable' cancer protein becomes druggable, thanks to shrub

Undruggable cancer protein becomes druggable, thanks to shrub
2021-04-20
A chemist from Purdue University has found a way to synthesize a compound to fight a previously "undruggable" cancer protein with benefits across a myriad of cancer types. Inspired by a rare compound found in a shrub native to North America, Mingji Dai, professor of chemistry and a scientist at the Purdue University Center for Cancer Research, studied the compound and discovered a cost-effective and efficient way to synthesize it in the lab. The compound -- curcusone D -- has the potential to help combat a protein found in many cancers, including some forms of breast, brain, colorectal, prostate, lung and liver cancers, among others. The protein, dubbed BRAT1, had previously been deemed "undruggable" for its chemical properties. In collaboration with Alexander Adibekian's ...

Astronauts' mental health risks tested in the Antarctic

Astronauts mental health risks tested in the Antarctic
2021-04-20
Astronauts who spend extended time in space face stressors such as isolation, confinement, lack of privacy, altered light-dark cycles, monotony and separation from family. Interestingly, so do people who work at international research stations in Antarctica, where the extreme environment is characterized by numerous stressors that mirror those present during long-duration space exploration. To better understand the psychological hurdles faced by astronauts, University of Houston professor of psychology Candice Alfano and her team developed the Mental Health Checklist (MHCL), a self-reporting instrument for detecting ...

Texas A&M study: Racial, ethnic diversity in schools influence mental health

2021-04-20
A Texas A&M researcher is discovering the demographic characteristics that can produce or lessen stress for racial and ethnic minority students in school settings. The study, recently published in the journal Ethnicity and Disease, collected mental health survey assessments among 389 sixth-graders from 14 Texas public schools in urban areas. Melissa DuPont-Reyes, assistant professor at the Texas A&M University School of Public Health, led the investigation of self-reported depressive-anxious symptoms over a two-year period. This issue of the journal highlighted research by early stage investigators, especially scholars of color, to advance new knowledge ...

Marine animals inspire new approaches to structural topology optimization

Marine animals inspire new approaches to structural topology optimization
2021-04-20
A mollusk and shrimp are two unlikely marine animals that are playing a very important role in engineering. The bodies of both animals illustrate how natural features, like the structures of their bones and shells, can be borrowed to enhance the performance of engineered structures and materials, like bridges and airplanes. This phenomenon, known as biomimetics, is helping advance structural topology research, where the microscale features found in natural systems are being mimicked. In a recent paper published by researchers at the Georgia Institute of Technology and the Pontifical Catholic University of Rio de ...

LAST 30 PRESS RELEASES:

Scientists unlock secrets behind flowering of the king of fruits

Texas A&M researchers illuminate the mysteries of icy ocean worlds

Prosthetic material could help reduce infections from intravenous catheters

Can the heart heal itself? New study says it can

Microscopic discovery in cancer cells could have a big impact

Rice researchers take ‘significant leap forward’ with quantum simulation of molecular electron transfer

Breakthrough new material brings affordable, sustainable future within grasp

How everyday activities inside your home can generate energy

Inequality weakens local governance and public satisfaction, study finds

Uncovering key molecular factors behind malaria’s deadliest strain

UC Davis researchers help decode the cause of aggressive breast cancer in women of color

Researchers discovered replication hubs for human norovirus

SNU researchers develop the world’s most sensitive flexible strain sensor

Tiny, wireless antennas use light to monitor cellular communication

Neutrality has played a pivotal, but under-examined, role in international relations, new research shows

Study reveals right whales live 130 years — or more

Researchers reveal how human eyelashes promote water drainage

Pollinators most vulnerable to rising global temperatures are flies, study shows

DFG to fund eight new research units

Modern AI systems have achieved Turing's vision, but not exactly how he hoped

Quantum walk computing unlocks new potential in quantum science and technology

Construction materials and household items are a part of a long-term carbon sink called the “technosphere”

First demonstration of quantum teleportation over busy Internet cables

Disparities and gaps in breast cancer screening for women ages 40 to 49

US tobacco 21 policies and potential mortality reductions by state

AI-driven approach reveals hidden hazards of chemical mixtures in rivers

Older age linked to increased complications after breast reconstruction

ESA and NASA satellites deliver first joint picture of Greenland Ice Sheet melting

Early detection model for pancreatic necrosis improves patient outcomes

Poor vascular health accelerates brain ageing

[Press-News.org] Fast brainwave oscillations identify and localize epileptic brain