PRESS-NEWS.org - Press Release Distribution
PRESS RELEASES DISTRIBUTION

Marine animals inspire new approaches to structural topology optimization

Marine animals inspire new approaches to structural topology optimization
2021-04-20
(Press-News.org) A mollusk and shrimp are two unlikely marine animals that are playing a very important role in engineering. The bodies of both animals illustrate how natural features, like the structures of their bones and shells, can be borrowed to enhance the performance of engineered structures and materials, like bridges and airplanes. This phenomenon, known as biomimetics, is helping advance structural topology research, where the microscale features found in natural systems are being mimicked.

In a recent paper published by researchers at the Georgia Institute of Technology and the Pontifical Catholic University of Rio de Janeiro (Brazil), a new approach to structural topology optimization is outlined that unifies both design and manufacturing to create novel microstructures, with potential applications ranging from enhanced facial implants for cranial reconstruction to improved ways to get materials into space for planetary exploration.

"With traditional structural topology optimization, we use algorithms to determine the ideal layout of a structure - one that maximizes structural efficiency and requires fewer material resources," said Emily Sanders, a Ph.D. student in the School of Civil and Environmental Engineering at Georgia Tech, and co-author of the paper. "Our new research takes that a step further by introducing structural hierarchy, microarchitectures, and spatially-varying mechanical properties to enable different types of functionality like those observed in the cuttlefish and mantis shrimp."

The properties of both animals inspired the new framework for designing hierarchical, spatially-varying microstructures and required the researchers to build on existing technologies used to create 3D-printed structures.

"In our recent work, we've developed technology that includes new algorithms and computations that are the enablers of a hierarchical microstructure," said Glaucio Paulino, Raymond Allen Jones chair and professor in the School of Civil and Environmental Engineering at Georgia Tech, co-author of the paper and recent inductee to the National Academy of Engineering. "We can then input that information into 3D printers and create structures with tremendous amounts of details. After studying the porous, layered cuttlefish bone that has extremely adaptive properties, we've been able to apply that to new structures and materials like the ones shown in our paper."

For Paulino and his team, he hopes this new research will be applied to his earlier work in cranial reconstruction on cancer patients and those who have had massive facial injuries and bone loss.

"Now, we can 3D print craniofacial implants that have been designed using topology optimization and provide the framework for tissue re-growth," said Paulino. "Ideally when combined with the spatially-varying microarchitectures we've recently developed, the implants would more closely mimic the porous nature of the human bone and would promote the growth of the bone itself inside the scaffold. As the bone grows, the scaffold biodegrades, and if everything goes well, in the end the scaffold is gone, and the patient has new bones in the right places."

Design and Manufacturing

As Sanders explains it, there are two aspects being investigated in this paper that advance the study of topology optimization: design and manufacturing. The first goal is to design an optimal macro geometry and at the same time, optimally distribute spatially-varying micro geometries within, in order to meet performance objectives. In this paper, the researchers were looking for maximally stiff parts with limited volume, much like the mantis shrimp hammer claw and they achieved a high level of complexity that mimics nature at both scales.

The second goal is related to the manufacturing needed to create the structures. With additive manufacturing - or 3D printing - researchers can manufacture structures with complex geometries. But with the research team's introduction of spatially-varying microstructures, the printing becomes increasingly difficult.

"The more complex 3D data that we would have to send to the printer is so enormous that it's prohibitive," said Sanders. "So, we had to find a new way to communicate that information to the printer. Now, we communicate only 2D information, embedding the microstructures directly in 2D slices of the structure. At the end, the printer combines the slices to get the structure. It's much more efficient."

"What Emily did with manufacturing closes the loop," said Paulino. "We deliver on the design, mathematics, and algorithms. And we connect topology optimization with the additive manufacturing at both macro and micro levels."

Future Applications

When considering the future of the advancements made to structural topology optimization in this paper, Paulino and Sanders both see applications in biomaterials, as well as magnetic properties designed for space exploration.

For Paulino's work that continues in cranial reconstruction, he envisions interdisciplinary collaborations between engineering, chemistry and biology to develop biocompatible materials and architectures for medical use.

"We're not there yet, but this work is a step in the right direction," said Paulino. "Eventually, we'll be able to print biocompatible materials. This research with spatially-varying microarchitectures should enable the optimal design and manufacturing for biomaterial applications."

Regarding space exploration, the research could impact the creation of synthetic structures and systems with functionality, like magnetic material assemblages that could be actuated on demand by means of applied magnetic fields.

"An important aspect of this work is that it opened up our design space so that we can have spatially-varying properties, which enables us to do things we couldn't before," said Sanders.

Paulino goes on to explain that with space travel, each pound of material sent into space has an enormous cost, so the amount of material and volume brought on space missions is very limited.

"The way I see our manufacturing working in space is you print in place, potentially using printing materials from the foreign planet itself," said Paulino. "You can bring the additive printing capabilities to Mars and print structures with the properties you need when you get there. You print only what you need versus bringing everything you think you might need. In space, you want everything you do to be optimized."

Inspired by animals and how they function in nature, Paulino and his team have evolved topology optimization once again, this time with the new design and manufacturing of spatially-varying, hierarchical structures. And, soon, practical applications in biomedicine and space exploration are sure to follow.

INFORMATION:

The Georgia Institute of Technology, or Georgia Tech, is a top 10 public research university developing leaders who advance technology and improve the human condition.

The Institute offers business, computing, design, engineering, liberal arts, and sciences degrees. Its nearly 40,000 students, representing 50 states and 149 countries, study at the main campus in Atlanta, at campuses in France and China, and through distance and online learning.

As a leading technological university, Georgia Tech is an engine of economic development for Georgia, the Southeast, and the nation, conducting more than $1 billion in research annually for government, industry, and society.

Research News Georgia Institute of Technology
177 North Avenue
Atlanta, Georgia 30332-0181 USA

Additional Media Relations Contact: Tracey Reeves (tracey.reeves@gatech.edu)

Writer: Georgia Parmelee


[Attachments] See images for this press release:
Marine animals inspire new approaches to structural topology optimization

ELSE PRESS RELEASES FROM THIS DATE:

Boosting fiber optics communications with advanced quantum-enhanced receiver

Boosting fiber optics communications with advanced quantum-enhanced receiver
2021-04-20
WASHINGTON, April 20, 2021 -- Fiber optic technology is the holy grail of high-speed, long-distance telecommunications. Still, with the continuing exponential growth of internet traffic, researchers are warning of a capacity crunch. In AVS Quantum Science, by AIP Publishing, researchers from the National Institute of Standards and Technology and the University of Maryland show how quantum-enhanced receivers could play a critical role in addressing this challenge. The scientists developed a method to enhance receivers based on quantum physics properties to dramatically increase network ...

Inhibition of meprin β enzyme linked to the development of Alzheimer's disease analyzed

Inhibition of meprin β enzyme linked to the development of Alzheimers disease analyzed
2021-04-20
Researchers at Johannes Gutenberg University Mainz (JGU) in Germany and the Institute of Molecular Biology of Barcelona in Spain have discovered how the blood plasma protein fetuin-B binds to the enzyme meprin β and used a computer model to visualize their findings. These results could lead to the development of new drugs to treat serious diseases such as Alzheimer's and cancer. Meprin β releases proteins from cell membranes, thus controlling important physiological functions in the human body. However, a dysregulation of this process can trigger the development of Alzheimer's and ...

Fixed network of smartphones provides earthquake early warning in Costa Rica

2021-04-20
Earthquake early warnings can be delivered successfully using a small network of off-the-shelf smartphones attached to building baseboards, according to a study conducted in Costa Rica last year. In his presentation at the Seismological Society of America (SSA)'s 2021 Annual Meeting, Ben Brooks of the U.S. Geological Survey said the ASTUTI (Alerta Sismica Temprana Utilizando Teléfonos Inteligentes) network of more than 80 stations performed comparably to scientific-grade warning systems. During six months' of ASTUTI operation, there were 13 earthquakes that caused noticeable ...

Was Cascadia's 1700 earthquake part of a sequence of earthquakes?

2021-04-20
The famous 1700 Cascadia earthquake that altered the coastline of western North America and sent a tsunami across the Pacific Ocean to Japan may have been one of a sequence of earthquakes, according to new research presented at the Seismological Society of America (SSA)'s 2021 Annual Meeting. Evidence from coastlines, tree rings and historical documents confirm that there was a massive earthquake in the U.S. Cascadia Subduction Zone on 26 January 1700. The prevailing hypothesis is that one megathrust earthquake, estimated at magnitude 8.7 to 9.2 and involving the entire tectonic plate boundary in the region, was responsible ...

Earthquakes continued after COVID-19-related oil and gas recovery shutdown

2021-04-20
When hydraulic fracturing operations ground to a halt last spring in the Kiskatinaw area of British Columbia, researchers expected seismic quiescence in the region. Instead, hundreds of small earthquakes occurred for months after operations shut down, according to a new study. In her presentation at the Seismological Society of America (SSA)'s 2021 Annual Meeting, Rebecca Salvage of the University of Calgary said about 65% of these events could not be attributed to either natural seismicity or active fluid injection from hydraulic fracturing operations. Salvage and her colleagues instead suggest the latent earthquakes may be the result of aseismic slip, driven by fluid from previous hydraulic fracture injections keeping rock pore pressures elevated. "Because there are lots of faults ...

Back pain shows association with increased mortality risk in women

2021-04-20
BOSTON - New research from Boston Medical Center identifies elevated mortality risk for women with back pain when compared to women without back pain. Back pain was not associated with mortality among men indicating long-term consequences of back pain may differ by sex. The overall findings suggest that mild back pain (pain that does not keep a person from exercising or doing daily activities) is unlikely to impact the length of one's life, but risk of mortality was increased among adults with more severe back pain. Published in the Journal of General Internal Medicine, this new study raises ...

How lessons from past emergencies could improve the pandemic response

2021-04-20
The lack of accountability, poor communication and insufficient planning plaguing the government’s response to the COVID-19 pandemic -- especially in its early months -- have roots in how the nation responded to 9/11, Hurricane Katrina and the H1N1 swine flu, a new study involving the University of Washington found. Focusing on the way government agencies assemble and allocate resources - the procurement system - researchers said the successes and shortcomings of responses to other large-scale crises show that a more centralized approach can achieve goals faster and more effectively. "In the moment of disasters, we prioritize saving ...

'Information theory' recruited to help scientists find cancer genes

Information theory recruited to help scientists find cancer genes
2021-04-20
Using a widely known field of mathematics designed mainly to study how digital and other forms of information are measured, stored and shared, scientists at Johns Hopkins Medicine and Johns Hopkins Kimmel Cancer Center say they have uncovered a likely key genetic culprit in the development of acute lymphoblastic leukemia (ALL). ALL is the most common form of childhood leukemia, striking an estimated 3,000 children and teens each year in the United States alone. Specifically, the Johns Hopkins team used "information theory," applying an analysis that relies on strings of zeros and ones -- the binary system of symbols common to computer languages and codes -- to identify variables or outcomes of a particular process. In the case of human ...

Newly discovered airway cells may shed light on SIDS and other conditions

2021-04-20
BOSTON - Recent research links certain cells that line the human airway with different infant diseases. The work, which is published in Cell Reports and was led by investigators at Massachusetts General Hospital (MGH), could lead to new prevention and treatment strategies for these conditions. The human airway--from the windpipe to the lungs--is lined with epithelial cells, including a type called pulmonary neuroendocrine cells (PNECs) that communicate with the nervous system and secrete different factors and hormones. Increased numbers and clusters of PNECs have been observed in various breathing-related illnesses, but the cells' roles in health ...

Reversal of blood droplet flight predicted, captured in experiments

Reversal of blood droplet flight predicted, captured in experiments
2021-04-20
WASHINGTON, April 20, 2021 -- Forensic science includes the analysis of blood backspatter involved in gunshot wounds, but scientific questions about the detailed role of fluids in these situations remained unresolved. To search for answers about how blood droplets from a gunshot wound can reverse direction while in flight, University of Illinois at Chicago and Iowa State University researchers explored the influence of propellant gases on blood backspatter. In Physics of Fluids, from AIP Publishing, the researchers report using numeric modeling to capture the behavior of gun muzzle gases and predict the reversal of blood droplet flight, which was captured experimentally. Their experiments also show the breakup of blood droplets, ...

LAST 30 PRESS RELEASES:

Innovative risk score accurately calculates which kidney transplant candidates are also at risk for heart attack or stroke, new study finds

Kidney outcomes in transthyretin amyloid cardiomyopathy

Partial cardiac denervation to prevent postoperative atrial fibrillation after coronary artery bypass grafting

Finerenone in women and men with heart failure with mildly reduced or preserved ejection fraction

Finerenone, serum potassium, and clinical outcomes in heart failure with mildly reduced or preserved ejection fraction

Hormone therapy reshapes the skeleton in transgender individuals who previously blocked puberty

Evaluating performance and agreement of coronary heart disease polygenic risk scores

Heart failure in zero gravity— external constraint and cardiac hemodynamics

Amid record year for dengue infections, new study finds climate change responsible for 19% of today’s rising dengue burden

New study finds air pollution increases inflammation primarily in patients with heart disease

AI finds undiagnosed liver disease in early stages

The American Society of Tropical Medicine and Hygiene and the Bill & Melinda Gates Foundation announce new research fellowship in malaria genomics in honor of professor Dominic Kwiatkowski

Excessive screen time linked to early puberty and accelerated bone growth

First nationwide study discovers link between delayed puberty in boys and increased hospital visits

Traditional Mayan practices have long promoted unique levels of family harmony. But what effect is globalization having?

New microfluidic device reveals how the shape of a tumour can predict a cancer’s aggressiveness

Speech Accessibility Project partners with The Matthew Foundation, Massachusetts Down Syndrome Congress

Mass General Brigham researchers find too much sitting hurts the heart

New study shows how salmonella tricks gut defenses to cause infection

Study challenges assumptions about how tuberculosis bacteria grow

NASA Goddard Lidar team receives Center Innovation Award for Advancements

Can AI improve plant-based meats?

How microbes create the most toxic form of mercury

‘Walk this Way’: FSU researchers’ model explains how ants create trails to multiple food sources

A new CNIC study describes a mechanism whereby cells respond to mechanical signals from their surroundings

Study uncovers earliest evidence of humans using fire to shape the landscape of Tasmania

Researchers uncover Achilles heel of antibiotic-resistant bacteria

Scientists uncover earliest evidence of fire use to manage Tasmanian landscape

Interpreting population mean treatment effects in the Kansas City Cardiomyopathy Questionnaire

Targeting carbohydrate metabolism in colorectal cancer: Synergy of therapies

[Press-News.org] Marine animals inspire new approaches to structural topology optimization