PRESS-NEWS.org - Press Release Distribution
PRESS RELEASES DISTRIBUTION

The future looks bright for infinitely recyclable plastic

A new environmental and technological analysis suggests that a revolutionary eco-friendly plastic is almost ready to hit the shelves

The future looks bright for infinitely recyclable plastic
2021-04-22
(Press-News.org) Plastics are a part of nearly every product we use on a daily basis. The average person in the U.S. generates about 100 kg of plastic waste per year, most of which goes straight to a landfill. A team led by Corinne Scown, Brett Helms, Jay Keasling, and Kristin Persson at Lawrence Berkeley National Laboratory (Berkeley Lab) set out to change that.

Less than two years ago, Helms announced the invention of a new plastic that could tackle the waste crisis head on. Called poly(diketoenamine), or PDK, the material has all the convenient properties of traditional plastics while avoiding the environmental pitfalls, because unlike traditional plastics, PDKs can be recycled indefinitely with no loss in quality.

Now, the team has released a study that shows what can be accomplished if manufacturers began using PDKs on a large scale. The bottom line? PDK-based plastic could quickly become commercially competitive with conventional plastics, and the products will get less expensive and more sustainable as time goes on.

"Plastics were never designed to be recycled. The need to do so was recognized long afterward," explained Nemi Vora, first author on the report and a former postdoctoral fellow who worked with senior author Corinne Scown. "But driving sustainability is the heart of this project. PDKs were designed to be recycled from the get-go, and since the beginning, the team has been working to refine the production and recycling processes for PDK so that the material could be inexpensive and easy enough to be deployed at commercial scales in anything from packaging to cars."

The study presents a simulation for a 20,000-metric-ton-per-year facility that puts out new PDKs and takes in used PDK waste for recycling. The authors calculated the chemical inputs and technology needed, as well as the costs and greenhouse gas emissions, then compared their findings to the equivalent figures for production of conventional plastics.

"These days, there is a huge push for adopting circular economy practices in the industry. Everyone is trying to recycle whatever they're putting out in the market," said Vora. "We started talking to industry about deploying 100% percent infinitely recycled plastics and have received a lot of interest."

"The questions are how much it will cost, what the impact on energy use and emissions will be, and how to get there from where we are today," added Helms, a staff scientist at Berkeley Lab's Molecular Foundry. "The next phase of our collaboration is to answer these questions."

Checking the boxes of cheap and easy

To date, more than 8.3 billion metric tons of plastic material have been produced, and the vast majority of this has ended up in landfills or waste incineration plants. A small proportion of plastics are sent to be recycled "mechanically," meaning they are melted down and then re-shaped into new products. However, this technique has limited benefit. Plastic resin itself is made of many identical molecules (called monomers) bound together into long chains (called polymers). Yet to give plastic its many textures, colors, and capabilities, additives like pigments, heat stabilizers, and flame retardants are added to the resin. When many plastics are melted down together, the polymers become mixed with a slew of potentially incompatible additives, resulting in a new material with much lower quality than newly produced virgin resin from raw materials. As such, less than 10% of plastic is mechanically recycled more than once, and recycled plastic usually also contains virgin resin to make up for the dip in quality.

PDK plastics sidestep this problem entirely - the resin polymers are engineered to easily break down into individual monomers when mixed with an acid. The monomers can then be separated from any additives and gathered to make new plastics without any loss of quality. The team's earlier research shows that this "chemical recycling" process is light on energy and carbon dioxide emissions, and it can be repeated indefinitely, creating a completely circular material lifecycle where there is currently a one-way ticket to waste.

Yet despite these incredible properties, to truly beat plastics at their own game, PDKs also need to be convenient. Recycling traditional petroleum-based plastic might be hard, but making new plastic is very easy.

"We're talking about materials that are basically not recycled," said Scown. "So, in terms of appealing to manufacturers, PDKs aren't competing with recycled plastic - they have to compete with virgin resin. And we were really pleased to see how cheap and how efficient it will be to recycle the material."

Scown, who is a staff scientist in Berkeley Lab's Energy Technologies and Biosciences Areas, specializes in modeling future environmental and financial impacts of emerging technologies. Scown and her team have been working on the PDK project since the outset, helping Helms' group of chemists and fabrication scientists to choose the raw materials, solvents, equipment, and techniques that will lead to the most affordable and eco-friendly product.

"We're taking early stage technology and designing what it would look like at commercial-scale operations" using different inputs and technology, she said. This unique, collaborative modeling process allows Berkeley Lab scientists to identify potential scale-up challenges and make process improvements without costly cycles of trial and error.

The team's report, published in Science Advances, models a commercial-scale PDK production and recycling pipeline based on the plastic's current state of development. "And the main takeaways were that, once you've produced the PDK initially and you've got it in the system, the cost and the greenhouse gas emissions associated with continuing to recycle it back to monomers and make new products could be lower than, or at least on par with, many conventional polymers," said Scown.

Planning to launch

Thanks to optimization from process modeling, recycled PDKs are already drawing interest from companies needing to source plastic. Always looking to the future, Helms and his colleagues have been conducting market research and meeting with people from industry since the project's early days. Their legwork shows that the best initial application for PDKs are markets where the manufacturer will receive their product back at the end of its lifespan, such as the automobile industry (through trade-ins and take-backs) and consumer electronics (through e-waste programs). These companies will then be able to reap the benefits of 100% recyclable PDKs in their product: sustainable branding and long-term savings.

"With PDKs, now people in industry have a choice," said Helms. "We're bringing in partners who are building circularity into their product lines and manufacturing capabilities, and giving them an option that is in line with future best practices."

Added Scown: "We know there's interest at that level. Some countries have plans to charge hefty fees on plastic products that rely on non-recycled material. That shift will provide a strong financial incentive to move away from utilizing virgin resins and should drive a lot of demand for recycled plastics."

After infiltrating the market for durable products like cars and electronics, the team hopes to expand PDKs into shorter-lived, single-use goods such as packaging.

A full circle future

As they forge plans for a commercial launch, the scientists are also continuing their techno-economic collaboration on the PDK production process. Although the cost of recycled PDK is already projected to be competitively low, the scientists are working on additional refinements to lower the cost of virgin PDK, so that companies are not deterred by the initial investment price.

And true to form, the scientists are working two steps ahead at the same time. Scown, who is also vice president for Life-cycle, Economics & Agronomy at the Joint BioEnergy Institute (JBEI), and Helms are collaborating with Jay Keasling, a leading synthetic biologist at Berkeley Lab and UC Berkeley and CEO of JBEI, to design a process for producing PDK polymers using microbe-made precursor ingredients. The process currently uses industrial chemicals, but was initially designed with Keasling's microbes in mind, thanks to a serendipitous cross-disciplinary seminar.

"Shortly before we started the PDK project, I was in a seminar where Jay was describing all the molecules that they could make at JBEI with their engineered microbes," said Helms. "And I got very excited because I saw that some of those molecules were things that we put in PDKs. Jay and I had a few chats and, we realized that nearly the entire polymer could be made using plant material fermented by engineered microbes."

"In the future, we're going to bring in that biological component, meaning that we can begin to understand the impacts of transitioning from conventional feedstocks to unique and possibly advantaged bio-based feedstocks that might be more sustainable long term on the basis of energy, carbon, or water intensity of production and recycling," Helms continued. "So, where we are now, this is the first step of many, and I think we have a really long runway in front of us, which is exciting."

INFORMATION:

The Molecular Foundry is a Department of Energy (DOE) Office of Science user facility that specializes in nanoscale science. JBEI is a Bioenergy Research Center funded by DOE's Office of Science.

This work was supported by the DOE's Bioenergy Technologies Office and Berkeley Lab's Laboratory Directed Research and Development (LDRD) program.

PDK technology is available for licensing and collaboration. If interested, please contact Berkeley Lab's Intellectual Property Office, ipo@lbl.gov.


[Attachments] See images for this press release:
The future looks bright for infinitely recyclable plastic

ELSE PRESS RELEASES FROM THIS DATE:

Burns victims struggling to pay

2021-04-22
Living away from community and country, Aboriginal families of children with severe burns also face critical financial stress to cover the associated costs of health care and treatment, a new study shows. An Australian study, led by Flinders researchers Dr Courtney Ryder and Associate Professor Tamara Mackean, found feelings of crisis were common in Aboriginal families with children suffering severe burns, with one family reporting skipping meals and others selling assets to reduce costs while in hospital. The economic hardship was found to be worse in families who live in rural areas - some households travelling more ...

Better country dementia care

2021-04-22
Rising levels of dementia is putting pressure on residential aged care facilities, including in rural and regional centres where nursing homes and staff are already under pressure. Now a pilot program of personalised interventions, including residents' favourite songs, has been shown to make a big difference to dementia behaviours, drug use and carers' wellbeing. Harmony in the Bush, a study led by Flinders University in five nursing homes in Queensland and South Australia, developed a multimodal person-centred non-pharmacological intervention program incorporating ...

Freeze! Executioner protein caught in the act

Freeze! Executioner protein caught in the act
2021-04-22
A new molecular 'freeze frame' technique has allowed WEHI researchers to see key steps in how the protein MLKL kills cells. Small proteins called 'monobodies' were used to freeze MLKL at different stages as it moved from a dormant to an activated state, a key process that enables an inflammatory form of cell death called necroptosis. The team were able to map how the three-dimensional structure of MLKL changed, revealing potential target sites that might be targets for drugs - a potential new approach to blocking necroptosis as a treatment for inflammatory diseases. The research, which ...

A new study identifies interleukin 11 as a marker of cancer-associated fibroblasts

A new study identifies interleukin 11 as a marker of cancer-associated fibroblasts
2021-04-22
IL-11 is known to promote the development of colorectal cancer in humans and mice, but when and where IL-11 is expressed during cancer development is unknown. "To address these questions experimentally, we generated reporter mice that express the green fluorescent protein (EGFP) gene in interleukin 11 (IL-11)-producing (IL11+) cells in vivo. We found IL-11+ cells in the colons of this murine colitis-associated colorectal cancer model," said Dr. Nishina, the lead author of a study published April 16 in Nature Communications. "The IL-11+ cells were absent from the colon under normal conditions but rapidly appeared in the tissues of mice with colitis and colorectal cancer." In the study, Dr. Nishina and colleagues characterized the IL-11+ cells by flow cytometry and found that ...

Artificial intelligence model predicts which key of the immune system opens the locks of coronavirus

2021-04-22
The human immune defense is based on the ability of white blood cells to accurately identify disease-causing pathogens and to initiate a defense reaction against them. The immune defense is able to recall the pathogens it has encountered previously, on which, for example, the effectiveness of vaccines is based. Thus, the immune defense the most accurate patient record system that carries a history of all pathogens an individual has faced. This information however has previously been difficult to obtain from patient samples. The learning immune system can be roughly divided into two parts, of which B cells are responsible for producing antibodies against pathogens, while T cells are responsible for destroying their targets. The measurement of antibodies by traditional laboratory ...

How is a molecular machine assembled?

2021-04-22
The study was published by the team from Ruhr-Universität Bochum (RUB), the Max Planck Institutes of Biochemistry and Biophysics, the Center for Synthetic Microbiology (SYNMIKRO) and the Chemistry Department at Philipps Universität Marburg, the University of Illinois Urbana-Champaign, USA, and Université Paris-Saclay, France, online on 12 April 2021 in the journal Nature Plants. Catalyst of life Photosystem II (PS II) is of fundamental importance for life, as it is able to catalyse the splitting of water. The oxygen released in this reaction allows us to breathe. In addition, PS II converts light energy ...

New therapy target for malignant melanomas in dogs

New therapy target for malignant melanomas in dogs
2021-04-22
Scientists have shown that the biological molecule PD-L1 is a potential target for the treatment of metastasized oral malignant melanoma in dogs. There are a number of cancers that affect dogs, but there are far fewer diagnosis and treatment options for these canine cancers. However, as dogs and humans are both mammals, it is likely that strategies and treatments for cancers in humans can be used for canine cancer, with minor modifications. A team of scientists, including Associate Professor Satoru Konnai from the Faculty of Veterinary Medicine at Hokkaido University, have demonstrated that an anti-cancer therapy that targets the cancer marker PD-L1--a target that has shown great promise for treating cancer in humans--is ...

New research data on the regulation of hormone-dependent breast cancer

2021-04-22
Notch proteins are key regulators of growth and differentiation of both normal and cancer cells. Researchers in Turku, Finland, have now demonstrated that the activities of distinct Notch family members are modified differently by phosphorylation. These results can be used in the development of new cancer treatments, especially for hormone-dependent breast cancer. Breast cancer is the most common type of cancer in women in Finland and other Western countries. Due to the availability of hormonal therapies, the estrogen-responsive breast cancer cases have a relatively good prognosis as compared to other breast cancer subtypes. However, some of them can also develop into an aggressive, metastatic disease, for which new types ...

Fat-footed tyrannosaur parents could not keep up with their skinnier adolescent offspring

Fat-footed tyrannosaur parents could not keep up with their skinnier adolescent offspring
2021-04-22
New research by the University of New England's Palaeoscience Research Centre suggests juvenile tyrannosaurs were slenderer and relatively faster for their body size compared to their multi-tonne parents. The research, published in the END ...

Landscape induced back-building thunderstorm lines along the mei-yu front

Landscape induced back-building thunderstorm lines along the mei-yu front
2021-04-22
Thunderstorm development is not always dependent on atmospheric physics alone. Often, the surrounding landscape can influence convection, especially in regions with dramatic elevation changes. The Yangtze river basin in China's Jiangxi Province, which is surrounded by the Nanling Mountains, often experiences mesoscale convective systems (MCS) or squall line thunderstorms during the summer. These MCSs develop along the persistent mei-yu front, and often exhibit quickly developing parallel back-building, or training thunderstorms, resulting in torrential flooding. A research team led by Dr. Zhemin Tan, Professor at the School of Atmospheric Sciences of Nanjing University, analyzed the influences of the regional landscape that lead to consistent MCS back-building ...

LAST 30 PRESS RELEASES:

AI finds undiagnosed liver disease in early stages

The American Society of Tropical Medicine and Hygiene and the Bill & Melinda Gates Foundation announce new research fellowship in malaria genomics in honor of professor Dominic Kwiatkowski

Excessive screen time linked to early puberty and accelerated bone growth

First nationwide study discovers link between delayed puberty in boys and increased hospital visits

Traditional Mayan practices have long promoted unique levels of family harmony. But what effect is globalization having?

New microfluidic device reveals how the shape of a tumour can predict a cancer’s aggressiveness

Speech Accessibility Project partners with The Matthew Foundation, Massachusetts Down Syndrome Congress

Mass General Brigham researchers find too much sitting hurts the heart

New study shows how salmonella tricks gut defenses to cause infection

Study challenges assumptions about how tuberculosis bacteria grow

NASA Goddard Lidar team receives Center Innovation Award for Advancements

Can AI improve plant-based meats?

How microbes create the most toxic form of mercury

‘Walk this Way’: FSU researchers’ model explains how ants create trails to multiple food sources

A new CNIC study describes a mechanism whereby cells respond to mechanical signals from their surroundings

Study uncovers earliest evidence of humans using fire to shape the landscape of Tasmania

Researchers uncover Achilles heel of antibiotic-resistant bacteria

Scientists uncover earliest evidence of fire use to manage Tasmanian landscape

Interpreting population mean treatment effects in the Kansas City Cardiomyopathy Questionnaire

Targeting carbohydrate metabolism in colorectal cancer: Synergy of therapies

Stress makes mice’s memories less specific

Research finds no significant negative impact of repealing a Depression-era law allowing companies to pay workers with disabilities below minimum wage

Resilience index needed to keep us within planet’s ‘safe operating space’

How stress is fundamentally changing our memories

Time in nature benefits children with mental health difficulties: study

In vitro model enables study of age-specific responses to COVID mRNA vaccines

Sitting too long can harm heart health, even for active people

International cancer organizations present collaborative work during oncology event in China

One or many? Exploring the population groups of the largest animal on Earth

ETRI-F&U Credit Information Co., Ltd., opens a new path for AI-based professional consultation

[Press-News.org] The future looks bright for infinitely recyclable plastic
A new environmental and technological analysis suggests that a revolutionary eco-friendly plastic is almost ready to hit the shelves