(Press-News.org) For corn, using dairy manure and legume cover crops in crop rotations can reduce the need for inorganic nitrogen fertilizer and protect water quality, but these practices also can contribute to emissions of nitrous oxide -- a potent greenhouse gas.
That is the conclusion of Penn State researchers, who measured nitrous oxide emissions from the corn phases of two crop rotations -- a corn-soybean rotation and a dairy forage rotation -- under three different management regimens. The results of the study offer clues about how dairy farmers might reduce the amount of nitrogen fertilizer they apply to corn crops, saving money and contributing less to climate change.
The results are important because although nitrous oxide accounts for just 7% of U.S. greenhouse gas emissions, it is significantly more potent than carbon dioxide or methane when it comes to driving climate change, according to Heather Karsten, associate professor of crop production/ecology in the College of Agricultural Sciences. Nitrous oxide is almost 300 times more powerful than carbon dioxide and remains in the atmosphere for more than 100 years.
"This research suggests that all nitrogen inputs -- manure, legumes and fertilizer -- contribute to nitrous oxide emissions," she said. "But farmers could reduce nitrous oxide emissions if they could apply manure after the crop is planted, closer to when the corn begins to take up nitrogen.
"And if they could apply manure only when the crop needs it by "side-dressing," she added, "they likely could use less inorganic nitrogen fertilizer. But equipment for side-dressing manure into a growing corn crop is not yet widely available."
Researchers compared the effects of three management treatments for no-till corn and measured nitrous oxide emissions throughout the corn growing season. In the corn-soybean rotation, the team compared nitrous oxide emissions from broadcasting dairy manure, shallow disk manure injection, and the application of inorganic fertilizer in the form of liquid urea ammonium nitrate.
Manure was applied before corn was planted, as most farms do, while in the inorganic fertilizer treatment, fertilizer was applied according to recommended practices -- when the corn was growing and taking up nitrogen.
This better timing for nitrogen application allowed for a reduced total nitrogen application, and the nitrous oxide emissions were lower than with the injected manure treatment. Injecting manure increased nitrous oxide emissions compared to the broadcast manure treatment in one year of the study, indicating that the environmental and nitrogen-conservation benefits of injection should be weighed against the additional emissions when selecting the practice.
The researchers also compared nitrous oxide emissions from corn grown for silage or grain in the no-till, six-year, dairy forage rotation in which corn followed a two-year, mixed alfalfa and orchardgrass forage crop and also a crimson clover cover crop. Manure also was broadcasted before corn planting, and nitrous oxide emissions were compared to the rotation in which corn was planted after soybean with broadcast manure. The nitrous oxide emissions during the corn season didn't differ among the three prior legume treatments.
In both experiments, nitrous oxide emissions peaked a few weeks after manure was applied and for a short period after fertilizer was applied. Since nitrous oxide emissions are influenced by factors that influence microbial processes, the researchers examined what environmental and nitrogen-availability factors were most predictive of nitrous oxide emissions. Increasing temperatures spurring corn growth and factors that influence soil nitrogen availability were important factors in both comparisons.
The study shows that nitrogen availability from organic inputs such as manure and legume cover crops can contribute to nitrous oxide emissions from corn, noted lead researcher Maria Ponce de Leon, former graduate student in Karsten's research group, now a doctoral candidate at the University of California, Davis. Identifying how to time organic nitrogen amendments with corn uptake represents an opportunity, she said, to reduce nitrous oxide emissions from dairy production systems.
Now, dairy farmers apply manure mostly prior to planting corn, and as the manure and the organic legume biomass from the cover crop decompose, the nitrogen content builds in the soil. Some of it can be lost as nitrous oxide emissions or leach into groundwater.
"Until the corn is rapidly taking up nitrogen from the soil, there's potential for both of those environmental losses," Ponce de Leon said. "If we could better synchronize the timing of the manure application to when the corn is growing and taking up nitrogen, we could reduce nitrous oxide missions. That also would help the crop and the farmer better capture the nitrogen that's available in that manure."
INFORMATION:
The research, recently published in Nutrient Cycling in Agroecosystems, was conducted at Penn State's Russell E. Larson Agricultural Research Center as part of the much larger "Dairy Cropping Systems" project that has been underway for more than a decade. Initiated in 2010, that parent project aims to sustainably produce the forage and feed for a typical 65-cow, 240-acre dairy farm in Pennsylvania.
Curtis Dell, soil scientist with the U.S. Department of Agriculture's Agricultural Research Service Pasture Systems and Watershed Management Research Unit, contributed to the research.
The U.S. Department of Agriculture supported this work.
SAN FRANCISCO, CA--April 21, 2021--Not all cancer cells within a tumor are created equal; nor do all immune cells (or all liver or brain cells) in your body have the same job. Much of their function depends on their location. Now, researchers at Gladstone Institutes, UC San Francisco (UCSF), and UC Berkeley have developed a more efficient method than ever before to simultaneously map the specialized diversity and spatial location of individual cells within a tissue or a tumor.
The technique, called XYZeq, was described online this week in the journal Science Advances. It involves segmenting a tissue into a microscopic grid before analyzing RNA from intact cells in each square of the grid, in order to gain a clear understanding of how each particular cell is functioning within ...
In rare cases, people who have been fully vaccinated against COVID and are immune to the virus can nevertheless develop the disease. New findings from The Rockefeller University now suggest that these so-called breakthrough cases may be driven by rapid evolution of the virus, and that ongoing testing of immunized individuals will be important to help mitigate future outbreaks.
The research, published this week in the New England Journal of Medicine, reports results from ongoing monitoring within the Rockefeller University community where two fully vaccinated individuals tested positive for the coronavirus. Both had received two doses of either the Moderna or the Pfizer vaccine, with the second dose occurring more than two weeks before the positive test. One person was initially ...
Fast reactions to future events are crucial. A boxer, for example, needs to respond to her opponent in fractions of a second in order to anticipate and block the next attack. Such rapid responses are based on estimates of whether and when events will occur. Now, scientists from the Max Planck Institute for Empirical Aesthetics (MPIEA) and New York University (NYU) have identified the cognitive computations underlying this complex predictive behavior.
How does the brain know when to pay attention? Every future event carries two distinct kinds of uncertainty: ...
COLUMBUS, Ohio - In the continuing search for dark matter in our universe, scientists believe they have found a unique and powerful detector: exoplanets.
In a new paper, two astrophysicists suggest dark matter could be detected by measuring the effect it has on the temperature of exoplanets, which are planets outside our solar system.
This could provide new insights into dark matter, the mysterious substance that can't be directly observed, but which makes up roughly 80% of the mass of the universe.
"We believe there should be about 300 billion exoplanets that are waiting to be discovered," said Juri Smirnov, a fellow at The Ohio ...
In the arms race "mankind against bacteria", bacteria are currently ahead of us. Our former miracle weapons, antibiotics, are failing more and more frequently when germs use tricky maneuvers to protect themselves from the effects of these drugs. Some species even retreat into the inside of human cells, where they remain "invisible" to the immune system. These particularly dreaded pathogens include multi-resistant staphylococci (MRSA), which can cause life-threatening diseases such as sepsis or pneumonia.
In order to track down the germs in their hidouts and eliminate them, a team of researchers from Empa and ETH Zurich is now developing nanoparticles that use a completely different mode ...
BOSTON - For many patients with localized lung cancer (non-small-cell lung carcinoma and small cell lung carcinoma), high-dose radiation with concurrent chemotherapy is a potential cure. Yet this treatment can cause severe, acute inflammation of the esophagus (esophagitis) in about one in five patients, requiring hospitalization and placement of a feeding tube.
A team of radiation oncologists at Mass General Cancer Center demonstrate in an early clinical trial that the radiation beam can be carefully "sculpted" to deliver the majority of a radiation dose directly to the tumor while effectively sparing tissues in the side of the ...
Ann Arbor, April 22, 2021 - Using nearly a year of anonymous geolocation data from 15-17 million cell phone users in 3,037 United States counties, investigators have found that individuals with lower income per capita or greater Republican orientation were associated with significantly reduced social distancing throughout the study period from March 2020 through January 2021. Their findings are reported in the American Journal of Preventive Medicine, published by Elsevier.
The associations persisted after adjusting for a variety of county-level demographic and socioeconomic characteristics. Other county-level characteristics, such as the share of Black and Hispanic residents, were also associated ...
Topological photonics has attracted a lot of attention recently. The application of topological band theory to photonics not only opens the door to novel devices, but also stimulates the exploration of new topological phases. In the photonic regime, symmetries that are unique to electromagnetic (EM) waves can intrinsically protect the band degeneracies in the momentum space. Topological systems realized using such symmetries are uniquely "photonic", having no counterparts in electronic or phononic systems.
Among various topological features in momentum space, nodal chain is a special ...
Guilt and social pressure lead people to underreport COVID-19 protocol violations, according to study of experimental data across 12 countries.
Article Title: A guilt-free strategy increases self-reported non-compliance with COVID-19 preventive measures: Experimental evidence from 12 countries
Funding: J.-F. Daoust acknowledges the financial support from SSPS Open Access (University of Edinburgh). M. Foucault and S. Brouard acknowledge the financial support from ANR - REPEAT grant (Special COVID-19), CNRS, Fondation de l'innovation politique, as well as regions Nouvelle-Aquitaine and Occitanie. Richard Nadeau and Éric Bélanger acknowledge the financial support from the Social Sciences and Humanities Research Council (SSHRC/CRSH). M. Becher gratefully acknowledges ...
Unconventional superconductors contain a number of exotic phases of matter that are thought to play a role, for better or worse, in their ability to conduct electricity with 100% efficiency at much higher temperatures than scientists had thought possible - although still far short of the temperatures that would allow their wide deployment in perfectly efficient power lines, maglev trains and so on.
Now scientists at the Department of Energy's SLAC National Accelerator Laboratory have glimpsed the signature of one of those phases, known as pair-density waves or PDW, and confirmed that it's intertwined with another phase known as charge density wave (CDW) stripes - wavelike patterns of higher and lower ...