(Press-News.org) Among the first lessons any grade school science student learns is that white light is not white at all, but rather a composite of many photons, those little droplets of energy that make up light, from every color of the rainbow - red, orange, yellow, green, blue, indigo, violet.
Now, researchers at Stanford University have developed an optical device that allows engineers to change and fine-tune the frequencies of each individual photon in a stream of light to virtually any mixture of colors they want. The result, published April 23 in Nature Communication, is a new photonic architecture that could transform fields ranging from digital communications and artificial intelligence to cutting-edge quantum computing.
"This powerful new tool puts a degree of control in the engineer's hands not previously possible," said Shanhui Fan, a professor of electrical engineering at Stanford and senior author of the paper.
The clover-leaf effect
The structure consists of a low-loss wire for light carrying a stream of photons that pass by like so many cars on a busy throughway. The photons then enter a series of rings, like the off-ramps in a highway cloverleaf. Each ring has a modulator that transforms the frequency of the passing photons - frequencies which our eyes see as color. There can be as many rings as necessary, and engineers can finely control the modulators to dial in the desired frequency transformation.
Among the applications that the researchers envision include optical neural networks for artificial intelligence that perform neural computations using light instead of electrons. Existing methods that accomplish optical neural networks do not actually change the frequencies of the photons, but simply reroute photons of a single frequency. Performing such neural computations through frequency manipulation could lead to much more compact devices, say the researchers.
"Our device is a significant departure from existing methods with a small footprint and yet offering tremendous new engineering flexibility," said Avik Dutt, a post-doctoral scholar in Fan's lab and second author of the paper.
Seeing the light
The color of a photon is determined by the frequency at which the photon resonates, which, in turn, is a factor of its wavelength. A red photon has a relatively slow frequency and a wavelength of about 650 nanometers. At the other end of the spectrum, blue light has a much faster frequency with a wavelength of about 450 nanometers.
A simple transformation might involve shifting a photon from a frequency of 500 nanometers to, say, 510 nanometers - or, as the human eye would register it, a change from cyan to green. The power of the Stanford team's architecture is that it can perform these simple transformations, but also much more sophisticated ones with fine control.
To further explain, Fan offers an example of an incoming light stream comprised of 20 percent photons in the 500-nanometer range and 80 percent at 510 nanometers. Using this new device, an engineer could fine-tune that ratio to 73 percent at 500 nanometers and 27 percent at 510 nanometers, if so desired, all while preserving the total number of photons. Or the ratio could 37 and 63 percent, for that matter. This ability to set the ratio is what makes this device new and promising. Moreover, in the quantum world, a single photon can have multiple colors. In that circumstance, the new device actually allows changing of the ratio of different colors for a single photon.
"We say this device allows for 'arbitrary' transformation but that does not mean 'random,'" said Siddharth Buddhiraju, who was a graduate student in Fan's lab during the research and is first author of the paper and who now works at Facebook Reality Labs. "Instead, we mean that we can achieve any linear transformation that the engineer requires. There is a great amount of engineering control here."
"It's very versatile. The engineer can control the frequencies and proportions very accurately and a wide variety of transformations are possible," Fan added. "It puts new power in the engineer's hands. How they will use it is up to them."
INFORMATION:
Additional authors include postdoctoral scholars Momchil Minkov, now at Flexcompute, and Ian A. D. Williamson, now at Google X.
This research was supported by the U.S. Air Force Office of Scientific Research.
Quantum systems consisting of several particles can be used to measure magnetic or electric fields more precisely. A young physicist at the University of Basel has now proposed a new scheme for such measurements that uses a particular kind of correlation between quantum particles.
In quantum information, the fictitious agents Alice and Bob are often used to illustrate complex communication tasks. In one such process, Alice can use entangled quantum particles such as photons to transmit or "teleport" a quantum state - unknown even to herself - to Bob, something that is not feasible using traditional communications.
However, it has been unclear whether the team Alice-Bob can use similar quantum states for other things besides communication. A young physicist at the University ...
Images
A new real-time, 3D motion tracking system developed at the University of Michigan combines transparent light detectors with advanced neural network methods to create a system that could one day replace LiDAR and cameras in autonomous technologies.
While the technology is still in its infancy, future applications include automated manufacturing, biomedical imaging and autonomous driving. A paper on the system is published in Nature Communications.
50928751578_a3702cc26c_q.jpgThe imaging system exploits the advantages of transparent, nanoscale, highly sensitive graphene photodetectors developed by Zhaohui Zhong, U-M associate professor of electrical and computer engineering, and his group. They're believed to be the first of their kind.
"The ...
The tree of life just got a little bigger: A team of scientists from the U.S. and China has identified an entirely new group of microbes quietly living in hot springs, geothermal systems and hydrothermal sediments around the world. The microbes appear to be playing an important role in the global carbon cycle by helping break down decaying plants without producing the greenhouse gas methane.
"Climate scientists should take these new microbes into account in their models to more accurately understand how they will impact climate change," said END ...
A patient arrives at hospital with chest pain. Doctors suspect heart attack and rapid diagnosis is important, but the tests to confirm it can be invasive and it could easily be something else. Could a simple blood test help to non-invasively rule heart attack in or out? A new study in open access journal Frontiers in Cardiovascular Medicine certainly suggests so. The study identified telltale markers in the blood of heart attack patients that distinguished them from patients suffering chest pain with other causes. The researchers hope that the results will lead to new diagnostic tests for heart attacks.
If you have ever suffered chest pain, the possibility of a heart attack may have popped into your head. While chest pain is ...
New research provides evidence that people have transmitted SARS-CoV-2, the virus that causes COVID-19, to cats during the pandemic in the UK. The study, which is published in Veterinary Record, detected the virus last year in cats that developed mild or severe respiratory disease.
Investigators used a range of laboratory techniques to show that two domestic cats from households with suspected cases of COVID-19 were infected with SARS-CoV-2.
"These findings indicate that human-to-cat transmission of SARS-CoV-2 occurred during the COVID-19 pandemic in ...
Researchers from the University of Oxford and their partners have today reported findings from a Phase IIb trial of a candidate malaria vaccine, R21/Matrix-M, which demonstrated high-level efficacy of 77% over 12-months of follow-up. In their findings (posted on SSRN/Preprints with The Lancet) they note that they are the first to meet the World Health Organization's Malaria Vaccine Technology Roadmap goal of a vaccine with at least 75% efficacy.
The authors report (in findings in press with The Lancet) from a Phase IIb randomised, controlled, double-blind trial conducted at the Clinical Research Unit of Nanoro (CRUN) / Institut de Recherche en Sciences de la Santé (IRSS), Burkina Faso. 450 participants, aged 5-17 months, were recruited from the catchment area of Nanoro, covering ...
New research led by Curtin University has revealed how radar satellites can improve the ability to detect, monitor, prepare for and withstand natural disasters in Australia including bushfires, floods and earthquakes.
The research used Synthetic Aperture Radar data obtained by the European Space Agency Sentinel-1 satellite, amongst others, to evaluate Australia-specific case studies.
Lead researcher Dr Amy Parker, an ARC Research Fellow from Curtin's School of Earth and Planetary Sciences, said the Sentinel-1 satellite mission provided the first complete global Synthetic Aperture Radar (SAR) dataset and the first opportunity to use this type of data to assess hazards in new locations, including Australia.
"What makes SAR so valuable is that it provides all-weather and night-and-day ...
Researchers from Nanjing University, National Sun Yat-sen University, and Northwestern University published a new paper in the Journal of Marketing that shows that the spatial distance between products and consumers can affect perceived value and willingness to pay.
The study, forthcoming in the Journal of Marketing, is titled "Values Created from Far and Near: Influence of Spatial Distance on Brand Evaluation" and is authored by Xing-Yu (Marcos) Chu, Chun-Tuan Chang, and Angela Y. Lee.
No one ever questions why some retail products are on display in cabinets behind the sales counter, ...
A new species of deep-sea dwelling dumbo octopus called Grimpoteuthis imperator sp. nov. has been described using a combination of MRI, micro-CT and minimally invasive gene analysis rather than traditional dissection methods. The findings are presented in the open access journal BMC Biology.
The single specimen, which was identified as a mature male, was named G. imperator because it was discovered in the northern part of the Emperor Seamounts, an undersea mountain ridge in the Northwest Pacific Ocean. In addition to the scientific name in Latin, the authors suggest possible common names for this new species such as Emperor dumbo, Dumbo impérial (French), and Kaiserdumbo (German).
Finned or dumbo octopods, although considered rare organisms, form ...
Grass crops are able to bend the rules of evolution by borrowing genes from their neighbours, giving them a competitive advantage, a new study has revealed.
Research, led by the University of Sheffield, is the first to show that grasses can incorporate DNA from other species into their genomes through a process known as lateral gene transfer.
The stolen genetic secrets give them an evolutionary advantage by allowing them to grow faster, bigger or stronger and adapt to new environments quicker. These findings could inform future work to create crops that are more resistant to the effects of climate change and help to tackle food security problems.
The Sheffield team studied grasses, which include some of the most economically and ecologically important plants, such as the most ...