PRESS-NEWS.org - Press Release Distribution
PRESS RELEASES DISTRIBUTION

Engineering single-molecule fluorescence with asymmetric nano-antennas

Engineering single-molecule fluorescence with asymmetric nano-antennas
2021-04-23
(Press-News.org) Single-molecule fluorescence detection (SMFD) is able to probe, one molecule at a time, dynamical processes that are crucial for understanding functional mechanisms in biosystems. Fluorescence in the Near-infrared (NIR) offers improved Signal to Noise Ratio (SNR) by reducing the scattering, absorption and autofluorescence from biological cellular or tissue samples, therefore, provides high imaging resolution with increased tissue penetration depth that are important for biomedical applications. However, most NIR-emitters suffer from low quantum yield, the weak NIR fluorescence signal makes the detection extremely difficult. Plasmonic nanostructures are capable of converting localized electromagnetic energy into free radiation and vice versa. This capability makes them efficient nano-antennas for modulating molecular fluorescence. The plasmonic nano-antenna generally enhances the fluorescence of a nearby molecule by enhancing the excitation rate and the quantum yield of the molecule. In order to optimally enhance the fluorescence, the plasmonic mode of the nano-antenna has to 1) couple strongly to the molecule and 2) radiate strongly to free space. Simultaneously satisfying the two requirements poses a challenge that is impossible to overcome in conventional, symmetric plasmonic nanostructures.

In a new paper published in Light Science & Application, scientists from the State Key Laboratory of Surface Physics, Physics Department of Fudan University, China, establishes a novel, universal approach to enhance single-molecule fluorescence in the NIR regime without compromising the molecule's photostability. They construct asymmetric nano-antennas consisting of two bars with unequal lengths (Fig. 1) that provide multiple plasmonic modes with tunable resonance frequencies matching both excitation and emission frequencies of the fluorophore. The added tuning parameter, i.e., the ratio of the bar lengths, in such asymmetric structures offers new possibilities to modulate the near-field and far-field properties of the plasmonic modes, thereby further improving both excitation and emission processes. As a result, they experimentally acquire a single-molecule fluorescence enhancement factor up to 405 (Fig. 2), and the corresponding theoretical calculations indicate the quantum yield can be as high as 80%. Because the quantum yield plays a major role in this setup, this enhancement is achieved without sacrificing the molecules' survival time under laser irradiation. In addition, compared with reference groups of molecules located on glass substrate, the authors have observed a significantly increased photobleaching time in molecules located around asymmetric double-bar nano-antennas (Fig. 3), indicating a much higher number of fluorescence photons emitted by those molecules. The nano-antennas are, therefore, able to drastically suppress photobleaching. Because the local field enhancement does not improve photostability, the suppression comes mainly from the increased quantum yield as a result of competition between photobleaching rate and energy transfer rate to antenna.

INFORMATION:


[Attachments] See images for this press release:
Engineering single-molecule fluorescence with asymmetric nano-antennas

ELSE PRESS RELEASES FROM THIS DATE:

Inhibitory effect of strawberry geranium on inflammatory response in skin keratinocytes

Inhibitory effect of strawberry geranium on inflammatory response in skin keratinocytes
2021-04-23
Strawberry geranium (Saxifraga stolonifera) has been used in Japan as a herbal medicine to treat wounds and swelling, and continues to be an ingredient in food and cosmetics. Pharmacological studies have shown that extracts of strawberry geranium have antioxidant and antitumor activities. However, the anti-inflammatory effect of strawberry geranium on the skin had not been well characterized. This study, first-authored by associate professor Takeshi Kawahara of the Institute of Agriculture, Shinshu University for a joint research project with Maruzen Pharmaceutical Co., ...

How philosophy can change the understanding of pain

2021-04-23
Dr. Sabrina Coninx from Ruhr-Universität Bochum and Dr. Peter Stilwell from McGill University, Canada, have investigated how philosophical approaches can be used to think in new ways about pain and its management. The researchers advocate not merely reducing chronic pain management to searching and treating underlying physical changes but instead adopting an approach that focuses on the person as a whole. Their work was published online in the journal "Synthese" on 15 April 2021. It is not currently possible to treat chronic pain effectively in many cases. This has encouraged researchers from various disciplines to consider new approaches ...

Researchers realize high-efficiency frequency conversion on integrated photonic chip

2021-04-23
A team led by Prof. GUO Guangcan and Prof. ZOU Changling from the University of Science and Technology of China of the Chinese Academy of Sciences realized efficient frequency conversion in microresonators via a degenerate sum-frequency process, and achieved cross-band frequency conversion and amplification of converted signal through observing the cascaded nonlinear optical effects inside the microresonator. The study was published in Physics Review Letters. Coherent frequency conversion process has wide application in classical and quantum information fields such as communication, detection, ...

Heartbeat can help detect signs of consciousness in patients after a coma

2021-04-23
A new study conducted jointly by the University of Liege (Belgium) and the Ecole normale superieure - PSL (France) shows that heart brain interactions, measured using electroencephalography (EEG), provide a novel diagnostic avenue for patients with disorders of consciousness. This study is published in the Journal of Neuroscience. Catherine Tallon-Baudry (ENS, CNRS) introduces : "The scientific community already knew that in healthy participants, the brain's response to heartbeats is related to perceptual, bodily and self-consciousness. We now show that we can obtain clinically meaningful information if we probe this interaction in ...

VR visualization supports research on molecular networks

VR visualization supports research on molecular networks
2021-04-23
Networks offer a powerful way to visualize and analyze complex systems. However, depending on the size and complexity of the network, many visualizations are limited. Protein interactions in the human body constitute such a complex system that can hardly be visualized. Jörg Menche, Adjunct Principal Investigator at the CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Professor at the University of Vienna and research group leader at Max Perutz Labs (Uni Wien/MedUni), and his team developed an immersive virtual reality (VR) platform that solves ...

An easy-to-use platform is a gateway to AI in microscopy

2021-04-23
Software using artificial intelligence, AI, is revolutionizing how microscopy images are analysed. For instance, AI can be used to detect features in images (i.e., tumours in biopsy samples) or improve the quality of images by removing unwanted noise. However, non-experts continue to find AI technologies difficult to use. In the article "Democratising deep learning for microscopy with ZeroCostDL4Mic", published in Nature Communications on 15 April 2021, researchers describe a platform called ZeroCostDL4Mic, which makes these AI technologies accessible to everyone. "The key novelty is that ZeroCostDL4Mic runs in the cloud for free and does not ...

From individual receptors towards whole-brain function

From individual receptors towards whole-brain function
2021-04-23
In the brain, more than a hundred molecular substances act as transmitters that control communication pathways between nerve cells via thousands of different receptor types. In a review article, an international research team discusses how the activation of certain nerve cell receptors affects neuronal networks in the brain. The authors from Ruhr-Universität Bochum (RUB), Pompeu Fabra University in Barcelona and Oxford University present concepts to quantify receptor-specific modulations of brain states. They have also developed a computer model that can predict the impact of individual receptor types on brain activity. In addition, the researchers show how the predictions obtained in the computer can be verified and refined by experimental methods. They hope this will lead to new ...

Scientists probe mysterious melting of Earth's crust in western North America

Scientists probe mysterious melting of Earths crust in western North America
2021-04-23
A group of University of Wyoming professors and students has identified an unusual belt of igneous rocks that stretches for over 2,000 miles from British Columbia, Canada, to Sonora, Mexico. The rock belt runs through Idaho, Montana, Nevada, southeast California and Arizona. "Geoscientists usually associate long belts of igneous rocks with chains of volcanoes at subduction zones, like Mount Shasta, Mount Hood, Mount St. Helens and Mount Rainer," says Jay Chapman, an assistant professor in UW's Department of Geology and Geophysics. "What makes this finding so interesting and mysterious is that this belt ...

Individual receptors caught in the act of coupling

2021-04-23
NEW YORK, NY--A new imaging technique developed by scientists at Columbia University Vagelos College of Physicians and Surgeons and St. Jude Children's Research Hospital captures movies of receptors on the surface of living cells in unprecedented detail and could pave the way to a trove of new drugs.  The researchers used the technique to zoom in on individual receptor proteins on the surface of living cells to determine if the receptors work solo or come together to work as pairs. This work appeared in the April issue of Nature Methods. "If two different receptors come together to form a dimer with distinctive function and pharmacology, this might allow for a new generation of drugs with greater specificity and reduced side effects," says Jonathan ...

People with heart rhythm disorders warned over cannabis use

2021-04-23
Sophia Antipolis - 23 April 2021: A study of 2.4 million hospitalised cannabis users has found that those with an arrhythmia were 4.5 times more likely to die while in hospital than those without. The research is presented at EHRA 2021, an online scientific congress of the European Society of Cardiology (ESC).1 "People should be aware of this devastating outcome and be careful when using cannabis if they have a concomitant heart problem," said study author Dr. Sittinun Thangjui of Bassett Healthcare Network, Cooperstown, US. Marijuana or cannabis is the most commonly used psychoactive substance worldwide.2 However, there is limited knowledge about safety of the drug in people with cardiac arrhythmias. This study examined the burden ...

LAST 30 PRESS RELEASES:

Hepatitis B is globally underassessed and undertreated, especially among women and Asian minorities in the West

Efficient stochastic parallel gradient descent training for on-chip optical processors

Liquid crystal-integrated metasurfaces for an active photonic platform

Unraveling the efficiency losses and improving methods in quantum dot-based infrared up-conversion photodetectors

A novel deep proteomic approach unveils molecular signatures affected by aging and resistance training

High-intensity spatial-mode steerable frequency up-converter toward on-chip integration

Study indicates that cancer patients gain important benefits from genome-matched treatments

Gift to UCR clinic aims to assist local unhoused population

Research breakthrough on birth defect affecting brain size

Researchers offer US roadmap to close the carbon cycle

Precipitation may brighten Colorado River’s future

Identifying risks of human flea infestations in plague-endemic areas of Madagascar

Archaea can be picky parasites

EPA underestimates methane emissions from landfills, urban areas

Feathers, cognition and global consumerism in colonial Amazonia

Satellite images of plants’ fluorescence can predict crop yields

Machine learning tool identifies rare, undiagnosed immune disorders through patients’ electronic health records

MD Anderson researcher Sharon Dent elected to prestigious National Academy of Sciences

Nonmotor seizures may be missed in children, teens

Emergency departments frequently miss signs of epilepsy in children

Unraveling the roles of non-coding DNA explains childhood cancer’s resistance to chemotherapy

Marshall University announces new clinical trial studying the effect of ACL reconstruction on return to play in sports

New York State is vulnerable to increasing weather-driven power outages, with vulnerable people in the Bronx, Queens and other parts of New York City being disproportionately affected

Time-restricted eating and high-intensity exercise might work together to improve health

Simulations of agriculture on Mars using pea, carrot and tomato plants suggest that intercropping, growing different crops mixed together, could boost yields in certain conditions

New computer algorithm supercharges climate models and could lead to better predictions of future climate change

These communities are most vulnerable to weather-related power outages in New York State

New strategy could lead to universal, long-lasting flu shot

Mystery behind huge opening in Antarctic sea ice solved

Brain imaging study reveals connections critical to human consciousness

[Press-News.org] Engineering single-molecule fluorescence with asymmetric nano-antennas