PRESS-NEWS.org - Press Release Distribution
PRESS RELEASES DISTRIBUTION

VR visualization supports research on molecular networks

A new VR platform enables the display of huge amounts of data. This can be helpful in the study of rare genetic defects, among other things.

VR visualization supports research on molecular networks
2021-04-23
(Press-News.org) Networks offer a powerful way to visualize and analyze complex systems. However, depending on the size and complexity of the network, many visualizations are limited. Protein interactions in the human body constitute such a complex system that can hardly be visualized. Jörg Menche, Adjunct Principal Investigator at the CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Professor at the University of Vienna and research group leader at Max Perutz Labs (Uni Wien/MedUni), and his team developed an immersive virtual reality (VR) platform that solves this problem. With the help of VR visualization of protein interactions, it will be possible in the future to better recognize correlations and identify those genetic aberrations that are responsible for rare diseases.

The larger and more complex networks are, the more difficult their visualization on the screen becomes. Conventional computer programs quickly reach their limits. This challenge was addressed by network scientist Jörg Menche and his research group at the CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences. They developed a VR platform for exploring huge amounts of data and their complex interplay in a uniquely intuitive fashion.

The body as a network

The representation of complex data can be particularly important in the search for the cause of rare diseases, because the human body, with its approximately 20,000 proteins that are encoded in the human genome and interact with each other, represents a huge complex network. Whether movement or digestion - at the molecular level, all biological processes are based on the interaction between proteins. If the protein interactions are illustrated in a network, a barely representable picture of about 18,000 dots - proteins - and about 300,000 lines between these dots will be created. Menche and his research group used the virtual reality (VR) platform they developed to make this image "readable" and, in collaboration with St. Anna Children's Cancer Research, succeeded in making the entirety of protein interactions visible for the first time. This makes it possible to interactively explore the vast and complex network.

Approaching the cause of rare immune diseases

For their study, published in Nature Communications, first author Sebastian Pirch and Menche's research group identified connection patterns between different protein complexes in the human body and linked them to their biological functions. In addition, the scientists used global databases to identify specific protein complexes associated with a particular disease. "While conventional forms of representation would look like a proverbial 'hairball', the 3-dimensional representation enables the precise analysis and observation of the different protein complexes and their interactions," says study author Pirch. This can be particularly important in the identification of rare genetic defects and crucial for therapeutic measures. "On the one hand, our study represents an important proof of concept of our VR platform; on the other hand, it directly demonstrates the enormous potential of visualizing molecular networks," says project leader Menche. "Especially in rare diseases, severe immune diseases, protein complexes associated with specific clinical symptoms can be analyzed in more detail to develop hypotheses about their respective pathobiological mechanisms. This facilitates the approach to disease causes and subsequently the search for targeted therapeutic measures."

About the VR platform

The platform developed by Menche's research group is designed for maximum flexibility and extensibility. Key features include the import of user-defined code for data analysis, easy integration of external databases, and a high degree of design freedom for arbitrary elements of user interfaces. The researchers were able to draw on technology normally used in the development of 3D computer games, such as the globally popular game Fortnite. By publishing the source code, the researchers hope to convince other developers of the potential of virtual reality for analyzing scientific data.

INFORMATION:

The study "VRNetzer: A Virtual Reality Network Analysis Platform" was published in the journal Nature Communications on April 23, 2021. DOI: 10.1038/s41467-021-22570-w.

Authors: Sebastian Pirch, Felix Müller, Eugenia Iofinova, Julia Pazmandi, Christiane V. R. Hütter, Martin Chiettini, Celine Sin, Kaan Boztug, Iana Podkosova, Hannes Kaufmann & Jörg Menche

Funding: This work was supported by the Vienna Science and Technology Fund (WWTF) through projects VRG15-005 and NXT19-008, and by an Epic MegaGrant.

Jörg Menche studied physics in Leipzig, Recife and Berlin. He did his PhD with Reinhard Lipowsky at the Max-Planck-Institute for Colloids and Interfaces in Potsdam (Germany), and was a postdoctoral fellow with Albert-László Barabási at Northeastern University and at the Center for Cancer Systems Biology at Dana Farber Cancer Institute in Boston. He joined CeMM in 2015 as a Principal Investigator. In September 2020, he received a joint professorship at the Max Perutz Labs and the Faculty of Mathematics of the University of Vienna, and became CeMM Adjunct PI.

The mission of CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences is to achieve maximum scientific innovation in molecular medicine to improve healthcare. At CeMM, an international and creative team of scientists and medical doctors pursues free-minded basic life science research in a large and vibrant hospital environment of outstanding medical tradition and practice. CeMM's research is based on post-genomic technologies and focuses on societally important diseases, such as immune disorders and infections, cancer and metabolic disorders. CeMM operates in a unique mode of super-cooperation, connecting biology with medicine, experiments with computation, discovery with translation, and science with society and the arts. The goal of CeMM is to pioneer the science that nurtures the precise, personalized, predictive and preventive medicine of the future. CeMM trains a modern blend of biomedical scientists and is located at the campus of the General Hospital and the Medical University of Vienna. http://www.cemm.at

The Max Perutz Labs are a research institute established by the University of Vienna and the Medical University of Vienna to provide an environment for excellent, internationally recognized research and education in the field of Molecular Biology. Dedicated to a mechanistic understanding of fundamental biomedical processes, scientists at the Max Perutz Labs aim to link breakthroughs in basic research to advances in human health. The Max Perutz Labs are located at the Vienna BioCenter, one of Europe's hotspots for Life Sciences, and host around 50 research groups, involving more than 450 scientists and staff from 40 nations. http://www.maxperutzlabs.ac.at

St. Anna CCRI is an internationally renowned multidisciplinary research institution with the aim to develop and optimize diagnostic, prognostic, and therapeutic strategies for the treatment of children and adolescents with cancer. To achieve this goal, it combines basic research with translational and clinical research and focus on the specific characteristics of childhood tumor diseases in order to provide young patients with the best possible and most innovative therapies. Dedicated research groups in the fields of tumor genomics and epigenomics, immunology, molecular biology, cell biology, bioinformatics and clinical research are working together to harmonize scientific findings with the clinical needs of physicians to ultimately improve the wellbeing of our patients. http://www.ccri.at, http://www.kinderkrebsforschung.at


[Attachments] See images for this press release:
VR visualization supports research on molecular networks

ELSE PRESS RELEASES FROM THIS DATE:

An easy-to-use platform is a gateway to AI in microscopy

2021-04-23
Software using artificial intelligence, AI, is revolutionizing how microscopy images are analysed. For instance, AI can be used to detect features in images (i.e., tumours in biopsy samples) or improve the quality of images by removing unwanted noise. However, non-experts continue to find AI technologies difficult to use. In the article "Democratising deep learning for microscopy with ZeroCostDL4Mic", published in Nature Communications on 15 April 2021, researchers describe a platform called ZeroCostDL4Mic, which makes these AI technologies accessible to everyone. "The key novelty is that ZeroCostDL4Mic runs in the cloud for free and does not ...

From individual receptors towards whole-brain function

From individual receptors towards whole-brain function
2021-04-23
In the brain, more than a hundred molecular substances act as transmitters that control communication pathways between nerve cells via thousands of different receptor types. In a review article, an international research team discusses how the activation of certain nerve cell receptors affects neuronal networks in the brain. The authors from Ruhr-Universität Bochum (RUB), Pompeu Fabra University in Barcelona and Oxford University present concepts to quantify receptor-specific modulations of brain states. They have also developed a computer model that can predict the impact of individual receptor types on brain activity. In addition, the researchers show how the predictions obtained in the computer can be verified and refined by experimental methods. They hope this will lead to new ...

Scientists probe mysterious melting of Earth's crust in western North America

Scientists probe mysterious melting of Earths crust in western North America
2021-04-23
A group of University of Wyoming professors and students has identified an unusual belt of igneous rocks that stretches for over 2,000 miles from British Columbia, Canada, to Sonora, Mexico. The rock belt runs through Idaho, Montana, Nevada, southeast California and Arizona. "Geoscientists usually associate long belts of igneous rocks with chains of volcanoes at subduction zones, like Mount Shasta, Mount Hood, Mount St. Helens and Mount Rainer," says Jay Chapman, an assistant professor in UW's Department of Geology and Geophysics. "What makes this finding so interesting and mysterious is that this belt ...

Individual receptors caught in the act of coupling

2021-04-23
NEW YORK, NY--A new imaging technique developed by scientists at Columbia University Vagelos College of Physicians and Surgeons and St. Jude Children's Research Hospital captures movies of receptors on the surface of living cells in unprecedented detail and could pave the way to a trove of new drugs.  The researchers used the technique to zoom in on individual receptor proteins on the surface of living cells to determine if the receptors work solo or come together to work as pairs. This work appeared in the April issue of Nature Methods. "If two different receptors come together to form a dimer with distinctive function and pharmacology, this might allow for a new generation of drugs with greater specificity and reduced side effects," says Jonathan ...

People with heart rhythm disorders warned over cannabis use

2021-04-23
Sophia Antipolis - 23 April 2021: A study of 2.4 million hospitalised cannabis users has found that those with an arrhythmia were 4.5 times more likely to die while in hospital than those without. The research is presented at EHRA 2021, an online scientific congress of the European Society of Cardiology (ESC).1 "People should be aware of this devastating outcome and be careful when using cannabis if they have a concomitant heart problem," said study author Dr. Sittinun Thangjui of Bassett Healthcare Network, Cooperstown, US. Marijuana or cannabis is the most commonly used psychoactive substance worldwide.2 However, there is limited knowledge about safety of the drug in people with cardiac arrhythmias. This study examined the burden ...

Patching up your health

Patching up your health
2021-04-23
Osaka, Japan - Scientists at Osaka University, in cooperation with JOANNEUM RESEARCH (Weiz, Austria), introduced wireless health monitoring patches that use embedded piezoelectric nanogenerators to power themselves with harvested biomechanical energy. This work may lead to new autonomous health sensors as well as battery-less wearable electronic devices. As wearable technology and smart sensors become increasingly popular, the problem of providing power to all of these devices become more relevant. While the energy requirements of each component may be modest, the need for wires or even batteries become burdensome and inconvenient. That is why new energy harvesting methods are needed. Also, the ability ...

With new optical device, engineers can fine tune the color of light

2021-04-23
Among the first lessons any grade school science student learns is that white light is not white at all, but rather a composite of many photons, those little droplets of energy that make up light, from every color of the rainbow - red, orange, yellow, green, blue, indigo, violet. Now, researchers at Stanford University have developed an optical device that allows engineers to change and fine-tune the frequencies of each individual photon in a stream of light to virtually any mixture of colors they want. The result, published April 23 in Nature Communication, is a new photonic architecture that could transform fields ranging from digital communications and artificial intelligence to cutting-edge quantum computing. "This powerful new tool puts a degree of control in the engineer's ...

Quantum steering for more precise measurements

2021-04-23
Quantum systems consisting of several particles can be used to measure magnetic or electric fields more precisely. A young physicist at the University of Basel has now proposed a new scheme for such measurements that uses a particular kind of correlation between quantum particles. In quantum information, the fictitious agents Alice and Bob are often used to illustrate complex communication tasks. In one such process, Alice can use entangled quantum particles such as photons to transmit or "teleport" a quantum state - unknown even to herself - to Bob, something that is not feasible using traditional communications. However, it has been unclear whether the team Alice-Bob can use similar quantum states for other things besides communication. A young physicist at the University ...

3D motion tracking system could streamline vision for autonomous tech

2021-04-23
Images A new real-time, 3D motion tracking system developed at the University of Michigan combines transparent light detectors with advanced neural network methods to create a system that could one day replace LiDAR and cameras in autonomous technologies. While the technology is still in its infancy, future applications include automated manufacturing, biomedical imaging and autonomous driving. A paper on the system is published in Nature Communications. 50928751578_a3702cc26c_q.jpgThe imaging system exploits the advantages of transparent, nanoscale, highly sensitive graphene photodetectors developed by Zhaohui Zhong, U-M associate professor of electrical and computer engineering, and his group. They're believed to be the first of their kind. "The ...

Climate-friendly microbes chomp dead plants without releasing heat-trapping methane

Climate-friendly microbes chomp dead plants without releasing heat-trapping methane
2021-04-23
The tree of life just got a little bigger: A team of scientists from the U.S. and China has identified an entirely new group of microbes quietly living in hot springs, geothermal systems and hydrothermal sediments around the world. The microbes appear to be playing an important role in the global carbon cycle by helping break down decaying plants without producing the greenhouse gas methane. "Climate scientists should take these new microbes into account in their models to more accurately understand how they will impact climate change," said END ...

LAST 30 PRESS RELEASES:

Students who use dating apps take more risks with their sexual health

Breakthrough idea for CCU technology commercialization from 'carbon cycle of the earth'

Keck Hospital of USC earns an ‘A’ Hospital Safety Grade from The Leapfrog Group

Depression research pioneer Dr. Philip Gold maps disease's full-body impact

Rapid growth of global wildland-urban interface associated with wildfire risk, study shows

Generation of rat offspring from ovarian oocytes by Cross-species transplantation

Duke-NUS scientists develop novel plug-and-play test to evaluate T cell immunotherapy effectiveness

Compound metalens achieves distortion-free imaging with wide field of view

Age on the molecular level: showing changes through proteins

Label distribution similarity-based noise correction for crowdsourcing

The Lancet: Without immediate action nearly 260 million people in the USA predicted to have overweight or obesity by 2050

Diabetes medication may be effective in helping people drink less alcohol

US over 40s could live extra 5 years if they were all as active as top 25% of population

Limit hospital emissions by using short AI prompts - study

UT Health San Antonio ranks at the top 5% globally among universities for clinical medicine research

Fayetteville police positive about partnership with social workers

Optical biosensor rapidly detects monkeypox virus

New drug targets for Alzheimer’s identified from cerebrospinal fluid

Neuro-oncology experts reveal how to use AI to improve brain cancer diagnosis, monitoring, treatment

Argonne to explore novel ways to fight cancer and transform vaccine discovery with over $21 million from ARPA-H

Firefighters exposed to chemicals linked with breast cancer

Addressing the rural mental health crisis via telehealth

Standardized autism screening during pediatric well visits identified more, younger children with high likelihood for autism diagnosis

Researchers shed light on skin tone bias in breast cancer imaging

Study finds humidity diminishes daytime cooling gains in urban green spaces

Tennessee RiverLine secures $500,000 Appalachian Regional Commission Grant for river experience planning and design standards

AI tool ‘sees’ cancer gene signatures in biopsy images

Answer ALS releases world's largest ALS patient-based iPSC and bio data repository

2024 Joseph A. Johnson Award Goes to Johns Hopkins University Assistant Professor Danielle Speller

Slow editing of protein blueprints leads to cell death

[Press-News.org] VR visualization supports research on molecular networks
A new VR platform enables the display of huge amounts of data. This can be helpful in the study of rare genetic defects, among other things.