From individual receptors towards whole-brain function
2021-04-23
(Press-News.org) In the brain, more than a hundred molecular substances act as transmitters that control communication pathways between nerve cells via thousands of different receptor types. In a review article, an international research team discusses how the activation of certain nerve cell receptors affects neuronal networks in the brain. The authors from Ruhr-Universität Bochum (RUB), Pompeu Fabra University in Barcelona and Oxford University present concepts to quantify receptor-specific modulations of brain states. They have also developed a computer model that can predict the impact of individual receptor types on brain activity.
In addition, the researchers show how the predictions obtained in the computer can be verified and refined by experimental methods. They hope this will lead to new ways of diagnosing and treating mental disorders. They report on their work and the current state of research in a State-of-the-Art Review in the FEBS Journal, published by the Federation of European Biochemical Societies in April 2021.
Simulating dynamics of brain states in a computer model
Much is already known about the molecular structure of neuronal receptors. But researchers know little about how individual receptor types modify holistic dynamics in the brain's networks. To simulate this in a computer model, the research team compiled data from three different imaging techniques: information on the anatomical connectivity in the brain, recorded with diffusion-weighted magnetic resonance imaging; information about resting-state activity of participants, obtained from measurements using functional magnetic resonance imaging, fMRI for short; and the distributions of receptor types, recorded with positron emission tomography. Using this input, the researchers were able to create an individual receptome for each subject reflecting the overall distribution of receptor types in the brain.
This enabled the researchers to simulate interactions between neurons dependent on activations of individual receptor types in the computer model. For example, they virtually activated the serotonin receptor 5-HT2A and observed the following changes in the in-silico model brain. "Activity patterns were surprisingly similar to those observed in the scanner after human subjects had been administered psilocybin or LSD - both psychedelic substances that specifically bind to the 5-HT2A receptor," explains Associate Professor Dr. Dirk Jancke, Head of the Bochum Optical Imaging Lab, lead author of the review article. The computer model was thus able to predict changes in the overall dynamics of the brain after activation of a single receptor type.
Testing predictions in experiments
Pharmacological substances are usually not specific to only one type of receptor; another drawback is that they can't be used to activate neurons locally in a targeted manner. This means that more complex predictions and tests on human subjects are only possible to a limited extent.
The authors therefore propose to refine their hypotheses by using optogenetic methods and to test them in animal experiments. The research group led by co-author Professor Stefan Herlitze from the Department of General Zoology and Neurobiology at RUB is one of the pioneers of this technique. Viral vectors are used to instruct cells to produce certain proteins. With this technique, gene-modified mice can, for example, be made to produce light-activated receptors and proteins that fluoresce when nerve cells are active.
In previous studies, the authors used the method for the first time to show how serotonin affects visual information processing. "Our results suggest that the 5-HT2A receptor suppresses current visual inputs," explains Dirk Jancke. "External stimuli thus become less important for the brain and, at the same time, internally occurring processes are relatively amplified. Hallucinations could have their cause in the fact that this imbalance has become too strong."
Prognosis, diagnosis and therapeutic potential
Mental illnesses are often based on dysfunctions of transmitter systems and, consequently, on changes in the activation of various receptors in the receptome. This is associated with specific modulations of brain states, which can manifest themselves in subtle changes in the dynamics of wide-spread and entangled neuronal networks in the brain. Through their research, the scientists hope to initiate new concepts using biomarkers to better diagnose and more specifically treat mental disorders. "Conceivable are specific pharmacological therapies and stimulation techniques in combination with concomitant psychiatric treatments, which help to learn new contexts to rebalance pathological brain states," says Jancke.
INFORMATION:
[Attachments] See images for this press release:
ELSE PRESS RELEASES FROM THIS DATE:
2021-04-23
A group of University of Wyoming professors and students has identified an unusual belt of igneous rocks that stretches for over 2,000 miles from British Columbia, Canada, to Sonora, Mexico.
The rock belt runs through Idaho, Montana, Nevada, southeast California and Arizona.
"Geoscientists usually associate long belts of igneous rocks with chains of volcanoes at subduction zones, like Mount Shasta, Mount Hood, Mount St. Helens and Mount Rainer," says Jay Chapman, an assistant professor in UW's Department of Geology and Geophysics. "What makes this finding so interesting and mysterious is that this belt ...
2021-04-23
NEW YORK, NY--A new imaging technique developed by scientists at Columbia University Vagelos College of Physicians and Surgeons and St. Jude Children's Research Hospital captures movies of receptors on the surface of living cells in unprecedented detail and could pave the way to a trove of new drugs.
The researchers used the technique to zoom in on individual receptor proteins on the surface of living cells to determine if the receptors work solo or come together to work as pairs. This work appeared in the April issue of Nature Methods.
"If two different receptors come together to form a dimer with distinctive function and pharmacology, this might allow for a new generation of drugs with greater specificity and reduced side effects," says Jonathan ...
2021-04-23
Sophia Antipolis - 23 April 2021: A study of 2.4 million hospitalised cannabis users has found that those with an arrhythmia were 4.5 times more likely to die while in hospital than those without. The research is presented at EHRA 2021, an online scientific congress of the European Society of Cardiology (ESC).1
"People should be aware of this devastating outcome and be careful when using cannabis if they have a concomitant heart problem," said study author Dr. Sittinun Thangjui of Bassett Healthcare Network, Cooperstown, US.
Marijuana or cannabis is the most commonly used psychoactive substance worldwide.2 However, there is limited knowledge about safety of the drug in people with cardiac arrhythmias. This study examined the burden ...
2021-04-23
Osaka, Japan - Scientists at Osaka University, in cooperation with JOANNEUM RESEARCH (Weiz, Austria), introduced wireless health monitoring patches that use embedded piezoelectric nanogenerators to power themselves with harvested biomechanical energy. This work may lead to new autonomous health sensors as well as battery-less wearable electronic devices.
As wearable technology and smart sensors become increasingly popular, the problem of providing power to all of these devices become more relevant. While the energy requirements of each component may be modest, the need for wires or even batteries become burdensome and inconvenient. That is why new energy harvesting methods are needed. Also, the ability ...
2021-04-23
Among the first lessons any grade school science student learns is that white light is not white at all, but rather a composite of many photons, those little droplets of energy that make up light, from every color of the rainbow - red, orange, yellow, green, blue, indigo, violet.
Now, researchers at Stanford University have developed an optical device that allows engineers to change and fine-tune the frequencies of each individual photon in a stream of light to virtually any mixture of colors they want. The result, published April 23 in Nature Communication, is a new photonic architecture that could transform fields ranging from digital communications and artificial intelligence to cutting-edge quantum computing.
"This powerful new tool puts a degree of control in the engineer's ...
2021-04-23
Quantum systems consisting of several particles can be used to measure magnetic or electric fields more precisely. A young physicist at the University of Basel has now proposed a new scheme for such measurements that uses a particular kind of correlation between quantum particles.
In quantum information, the fictitious agents Alice and Bob are often used to illustrate complex communication tasks. In one such process, Alice can use entangled quantum particles such as photons to transmit or "teleport" a quantum state - unknown even to herself - to Bob, something that is not feasible using traditional communications.
However, it has been unclear whether the team Alice-Bob can use similar quantum states for other things besides communication. A young physicist at the University ...
2021-04-23
Images
A new real-time, 3D motion tracking system developed at the University of Michigan combines transparent light detectors with advanced neural network methods to create a system that could one day replace LiDAR and cameras in autonomous technologies.
While the technology is still in its infancy, future applications include automated manufacturing, biomedical imaging and autonomous driving. A paper on the system is published in Nature Communications.
50928751578_a3702cc26c_q.jpgThe imaging system exploits the advantages of transparent, nanoscale, highly sensitive graphene photodetectors developed by Zhaohui Zhong, U-M associate professor of electrical and computer engineering, and his group. They're believed to be the first of their kind.
"The ...
2021-04-23
The tree of life just got a little bigger: A team of scientists from the U.S. and China has identified an entirely new group of microbes quietly living in hot springs, geothermal systems and hydrothermal sediments around the world. The microbes appear to be playing an important role in the global carbon cycle by helping break down decaying plants without producing the greenhouse gas methane.
"Climate scientists should take these new microbes into account in their models to more accurately understand how they will impact climate change," said END ...
2021-04-23
A patient arrives at hospital with chest pain. Doctors suspect heart attack and rapid diagnosis is important, but the tests to confirm it can be invasive and it could easily be something else. Could a simple blood test help to non-invasively rule heart attack in or out? A new study in open access journal Frontiers in Cardiovascular Medicine certainly suggests so. The study identified telltale markers in the blood of heart attack patients that distinguished them from patients suffering chest pain with other causes. The researchers hope that the results will lead to new diagnostic tests for heart attacks.
If you have ever suffered chest pain, the possibility of a heart attack may have popped into your head. While chest pain is ...
2021-04-23
New research provides evidence that people have transmitted SARS-CoV-2, the virus that causes COVID-19, to cats during the pandemic in the UK. The study, which is published in Veterinary Record, detected the virus last year in cats that developed mild or severe respiratory disease.
Investigators used a range of laboratory techniques to show that two domestic cats from households with suspected cases of COVID-19 were infected with SARS-CoV-2.
"These findings indicate that human-to-cat transmission of SARS-CoV-2 occurred during the COVID-19 pandemic in ...
LAST 30 PRESS RELEASES:
[Press-News.org] From individual receptors towards whole-brain function