PRESS-NEWS.org - Press Release Distribution
PRESS RELEASES DISTRIBUTION

Supernovae twins open up new possibilities for precision cosmology

Findings will enhance dark energy experiments at major telescopes

Supernovae twins open up new possibilities for precision cosmology
2021-05-07
(Press-News.org) Cosmologists have found a way to double the accuracy of measuring distances to supernova explosions - one of their tried-and-true tools for studying the mysterious dark energy that is making the universe expand faster and faster. The results from the Nearby Supernova Factory (SNfactory) collaboration, led by Greg Aldering of the Department of Energy's Lawrence Berkeley National Laboratory (Berkeley Lab), will enable scientists to study dark energy with greatly improved precision and accuracy, and provide a powerful crosscheck of the technique across vast distances and time. The findings will also be central to major upcoming cosmology experiments that will use new ground and space telescopes to test alternative explanations of dark energy.

Two papers published in The Astrophysical Journal report these findings, with Kyle Boone as lead author. Currently a postdoctoral fellow at the University of Washington, Boone is a former graduate student of Nobel Laureate Saul Perlmutter, the Berkeley Lab senior scientist and UC Berkeley professor who led one of the teams that originally discovered dark energy. Perlmutter was also a co-author on both studies.

Supernovae were used in 1998 to make the startling discovery that the expansion of the universe is speeding up, rather than slowing down as had been expected. This acceleration - attributed to the dark energy that makes up two-thirds of all the energy in the universe - has since been confirmed by a variety of independent techniques as well as with more detailed studies of supernovae.

The discovery of dark energy relied on using a particular class of supernovae, Type Ia. These supernovae always explode with nearly the same intrinsic maximum brightness. Because the observed maximum brightness of the supernova is used to infer its distance, the small remaining variations in the intrinsic maximum brightness limited the precision with which dark energy could be tested. Despite 20 years of improvements by many groups, supernovae studies of dark energy have until now remained limited by these variations.

Quadrupling the number of supernovae

The new results announced by the SNfactory come from a multi-year study devoted entirely to increasing the precision of cosmological measurements made with supernovae. Measurement of dark energy requires comparisons of the maximum brightnesses of distant supernovae billions of light-years away with those of nearby supernovae "only" 300 million light-years away. The team studied hundreds of such nearby supernovae in exquisite detail. Each supernova was measured a number of times, at intervals of a few days. Each measurement examined the spectrum of the supernova, recording its intensity across the wavelength range of visible light. An instrument custom-made for this investigation, the SuperNova Integral Field Spectrometer, installed at the University of Hawaii 2.2-meter telescope at Maunakea, was used to measure the spectra.

"We've long had this idea that if the physics of the explosion of two supernovae were the same, their maximum brightnesses would be the same. Using the Nearby Supernova Factory spectra as a kind of CAT scan through the supernova explosion, we could test this idea," said Perlmutter.

Indeed, several years ago, physicist Hannah Fakhouri, then a graduate student working with Perlmutter, made a discovery key to today's results. Looking at a multitude of spectra taken by the SNfactory, she found that in quite a number of instances, the spectra from two different supernovae looked very nearly identical. Among the 50 or so supernovae, some were virtually identical twins. When the wiggly spectra of a pair of twins were superimposed, to the eye there was just a single track. The current analysis builds on this observation to model the behavior of supernovae in the period near the time of their maximum brightness.

The new work nearly quadruples the number of supernovae used in the analysis. This made the sample large enough to apply machine-learning techniques to identify these twins, leading to the discovery that Type Ia supernova spectra vary in only three ways. The intrinsic brightnesses of the supernovae also depend primarily on these three observed differences, making it possible to measure supernova distances to the remarkable accuracy of about 3%.

Just as important, this new method does not suffer from the biases that have beset previous methods, seen when comparing supernovae found in different types of galaxies. Since nearby galaxies are somewhat different than distant ones, there was a serious concern that such dependence would produce false readings in the dark energy measurement. Now this concern can be greatly reduced by measuring distant supernovae with this new technique.

In describing this work, Boone noted, "Conventional measurement of supernova distances uses light curves - images taken in several colors as a supernova brightens and fades. Instead, we used a spectrum of each supernova. These are so much more detailed, and with machine-learning techniques it then became possible to discern the complex behavior that was key to measuring more accurate distances."

The results from Boone's papers will benefit two upcoming major experiments. The first experiment will be at the 8.4-meter Rubin Observatory, under construction in Chile, with its Legacy Survey of Space and Time, a joint project of the Department of Energy and the National Science Foundation. The second is NASA's forthcoming Nancy Grace Roman Space Telescope. These telescopes will measure thousands of supernovae to further improve the measurement of dark energy. They will be able to compare their results with measurements made using complementary techniques.

Aldering, also a co-author on the papers, observed that "not only is this distance measurement technique more accurate, it only requires a single spectrum, taken when a supernova is brightest and thus easiest to observe - a game changer!" Having a variety of techniques is particularly valuable in this field where preconceptions have turned out to be wrong and the need for independent verification is high.

INFORMATION:

The SNfactory collaboration includes Berkeley Lab, the Laboratory for Nuclear Physics and High Energy at Sorbonne University, the Center for Astronomical Research of Lyon, the Institute of Physics of the 2 Infinities at the University Claude Bernard, Yale University, Germany's Humboldt University, the Max Planck Institute for Astrophysics, China's Tsinghua University, the Center for Particle Physics of Marseille, and Clermont Auvergne University.

This work was supported by the Department of Energy's Office of Science, NASA's Astrophysics Division, the Gordon and Betty Moore Foundation, the French National Institute of Nuclear and Particle Physics and the National Institute for Earth Sciences and Astronomy of the French National Centre for Scientific Research, the German Research Foundation and German Aerospace Center, the European Research Council, Tsinghua University, and the National Natural Science Foundation of China.

Additional background

In 1998, two competing groups studying supernovae, the Supernova Cosmology Project and the High-z Supernova Search team, both announced they had found evidence that, contrary to expectations, the expansion of the universe was not slowing but becoming faster and faster. Dark energy is the term used to describe the cause of the acceleration. The 2011 Nobel Prize was awarded to leaders of the two teams: Saul Perlmutter of Berkeley Lab and UC Berkeley, leader of the Supernova Cosmology Project, and to Brian Schmidt of the Australian National University and Adam Riess of Johns Hopkins University, from the High-z team.

Additional techniques for measuring dark energy include the DOE-supported Dark Energy Spectroscopic Instrument, led by Berkeley Lab, which will use spectroscopy on 30 million galaxies in a technique called baryon acoustic oscillation. The Rubin Observatory will also use another called weak gravitational lensing.

Founded in 1931 on the belief that the biggest scientific challenges are best addressed by teams, Lawrence Berkeley National Laboratory (https://www.lbl.gov/) and its scientists have been recognized with 14 Nobel Prizes. Today, Berkeley Lab researchers develop sustainable energy and environmental solutions, create useful new materials, advance the frontiers of computing, and probe the mysteries of life, matter, and the universe. Scientists from around the world rely on the Lab's facilities for their own discovery science. Berkeley Lab is a multiprogram national laboratory, managed by the University of California for the U.S. Department of Energy's Office of Science.

DOE's Office of Science is the single largest supporter of basic research in the physical sciences in the United States and is working to address some of the most pressing challenges of our time. For more information, please visit energy.gov/science.

-By Bob Cahn


[Attachments] See images for this press release:
Supernovae twins open up new possibilities for precision cosmology

ELSE PRESS RELEASES FROM THIS DATE:

Researchers develop artificial intelligence that can detect sarcasm in social media

Researchers develop artificial intelligence that can detect sarcasm in social media
2021-05-07
Computer science researchers at the University of Central Florida have developed a sarcasm detector. Social media has become a dominant form of communication for individuals, and for companies looking to market and sell their products and services. Properly understanding and responding to customer feedback on Twitter, Facebook and other social media platforms is critical for success, but it is incredibly labor intensive. That's where sentiment analysis comes in. The term refers to the automated process of identifying the emotion -- either positive, negative or neutral -- associated with text. While ...

Having a ball: New English Premier League soccer ball more stable, drags more

Having a ball: New English Premier League soccer ball more stable, drags more
2021-05-07
Tsukuba, Japan - Scientists from the Faculty of Health and Sports Sciences at the University of Tsukuba used aerodynamics experiments to empirically test the flight properties of a new four-panel soccer ball adopted by the English Premier League this year. Based on projectile and wind-tunnel data, they computed the drag and side forces and found that the new ball was marginally more stable than previous versions but may not fly as far. This work may help improve the design of future sports equipment. Sports players know that millions of dollars in salary and potential endorsement deals can be at stake during each match. Soccer players often complain about the aerodynamic ...

Winning gene combination takes all

Winning gene combination takes all
2021-05-07
Researchers have traced the remaining last steps of the biological pathway that gives oats resistance to the deadly crop disease take-all. The discovery creates opportunities for new ways of defending wheat and other cereals against the soil-borne root disease. The research team have already taken the first step in this aim by successfully reconstituting the self-defence system in the model plant Nicotiana benthamiana. Further experiments to establish the avenacin biosynthetic pathway in wheat's more complex genome, to test if it will provide the same resistance ...

Hologram experts can now create real-life images that move in the air

Hologram experts can now create real-life images that move in the air
2021-05-07
They may be tiny weapons, but Brigham Young University's holography research group has figured out how to create lightsabers -- green for Yoda and red for Darth Vader, naturally -- with actual luminous beams rising from them. Inspired by the displays of science fiction, the researchers have also engineered battles between equally small versions of the Starship Enterprise and a Klingon Battle Cruiser that incorporate photon torpedoes launching and striking the enemy vessel that you can see with the naked eye. "What you're seeing in the scenes we create is real; there is nothing computer generated about them," said lead researcher Dan Smalley, a professor of electrical engineering at BYU. "This is not like the movies, where the lightsabers ...

Navigating the COVID-19 crisis to prevent pressure injuries: Learning health system helped one hospital adapt and update care in real time

2021-05-07
May 7, 2021 - Early in the COVID-19 pandemic, healthcare systems scrambled to modify patient care processes - particularly when it came to strategies aimed at reducing the risk of hospital-related complications. A look at how one hospital applied its learning health system (LHS) framework to respond to a COVID-19-related increase in hospital-acquired pressure injuries (HAPIs) is presented in the May/June Journal for Healthcare Quality (JHQ), the peer-reviewed journal of the National Association for Healthcare Quality (NAHQ). The journal is published in the Lippincott portfolio by Wolters Kluwer. "Given the significant challenges ...

Cutting-edge: New and improved drug to counter spinal anesthesia blues during C-sections

Cutting-edge: New and improved drug to counter spinal anesthesia blues during C-sections
2021-05-07
Today, deliveries via cesarean sections, or c-sections, have become quite common globally. Sometimes, c-sections are a medical necessity when normal deliveries become risky either for the mother or the baby. At other times, it can be a choice. C-sections today have become a considerably safer procedure than it was a few decades ago, but there is need to refine it further. In a END ...

New study determines cystic fibrosis therapy is safe and effective for young children

New study determines cystic fibrosis therapy is safe and effective for young children
2021-05-07
Children ages two to five who have the most common form of cystic fibrosis (CF), caused by two copies of the F508 gene mutation, have not had any modulator treatments available to them until recently. A new study authored by researchers at Children's Hospital Colorado and published May 6, 2021, in Lancet Respiratory Medicine shows that the CFTR modulator - lumacaftor/ivacaftor - can be safe and well-tolerated for this age range for up to 120 weeks, allowing younger children to begin proactive treatment of CF earlier in their lives. CF affects more than 70,000 people worldwide and is a chronic, progressive, life-shortening genetic disease caused by an absent or defective protein called the CF transmembrane conductance regulator (CFTR) protein, resulting from mutations in both copies ...

Emissions from human activity modify biogenic secondary organic aerosol formation

Emissions from human activity modify biogenic secondary organic aerosol formation
2021-05-07
Despite their extremely small size, submicron atmospheric aerosols are critical pollutants with climate change, air quality, and human health implications. Of these particles, secondary organic aerosols (SOA) form when volatile organic compounds (VOCs) oxidize to lower volatility products that bond with and increase aerosol particle size, or in some cases, they may simply exist by themselves. SOA constitutes a significant fraction of the global aerosol mass. Scientists are attempting to improve future aerosol modeling, but several discrepancies still exist between model-simulated and field-observed SOA budgets. ''Large uncertainties in model assessments of SOA budgets and correspondingly, its climate effects, ...

Discovery of huge Raman scattering at atomic point contact

Discovery of huge Raman scattering at atomic point contact
2021-05-07
Nanofabrication of electronic devices has reached a single nanometer scale (10-9 m). The rapid advancement of nanoscience and nanotechnology now requires atomic-scale optical spectroscopy in order to characterize atomistic structures that will affect the properties and functions of the electronic devices. The international team headed by Takashi Kumagai at Institute for Molecular Science discovered a huge enhancement of Raman scattering mediated by a formation of an atomic point contact between a plasmonic silver tip and a Si(111)-7×7 reconstructed surface. This was achieved by means of state-of-the-art low-temperature tip-enhanced ...

Algorithms show accuracy in gauging unconsciousness under general anesthesia

Algorithms show accuracy in gauging unconsciousness under general anesthesia
2021-05-07
Anesthestic drugs act on the brain but most anesthesiologists rely on heart rate, respiratory rate, and movement to infer whether surgery patients remain unconscious to the desired degree. In a new study, a research team based at MIT and Massachusetts General Hospital shows that a straightforward artificial intelligence approach, attuned to the kind of anesthetic being used, can yield algorithms that assess unconsciousness in patients based on brain activity with high accuracy and reliability. "One of the things that is foremost in the minds of anesthesiologists is 'Do I have somebody who is lying in front of me who may be conscious and I don't realize it?' Being ...

LAST 30 PRESS RELEASES:

AI finds undiagnosed liver disease in early stages

The American Society of Tropical Medicine and Hygiene and the Bill & Melinda Gates Foundation announce new research fellowship in malaria genomics in honor of professor Dominic Kwiatkowski

Excessive screen time linked to early puberty and accelerated bone growth

First nationwide study discovers link between delayed puberty in boys and increased hospital visits

Traditional Mayan practices have long promoted unique levels of family harmony. But what effect is globalization having?

New microfluidic device reveals how the shape of a tumour can predict a cancer’s aggressiveness

Speech Accessibility Project partners with The Matthew Foundation, Massachusetts Down Syndrome Congress

Mass General Brigham researchers find too much sitting hurts the heart

New study shows how salmonella tricks gut defenses to cause infection

Study challenges assumptions about how tuberculosis bacteria grow

NASA Goddard Lidar team receives Center Innovation Award for Advancements

Can AI improve plant-based meats?

How microbes create the most toxic form of mercury

‘Walk this Way’: FSU researchers’ model explains how ants create trails to multiple food sources

A new CNIC study describes a mechanism whereby cells respond to mechanical signals from their surroundings

Study uncovers earliest evidence of humans using fire to shape the landscape of Tasmania

Researchers uncover Achilles heel of antibiotic-resistant bacteria

Scientists uncover earliest evidence of fire use to manage Tasmanian landscape

Interpreting population mean treatment effects in the Kansas City Cardiomyopathy Questionnaire

Targeting carbohydrate metabolism in colorectal cancer: Synergy of therapies

Stress makes mice’s memories less specific

Research finds no significant negative impact of repealing a Depression-era law allowing companies to pay workers with disabilities below minimum wage

Resilience index needed to keep us within planet’s ‘safe operating space’

How stress is fundamentally changing our memories

Time in nature benefits children with mental health difficulties: study

In vitro model enables study of age-specific responses to COVID mRNA vaccines

Sitting too long can harm heart health, even for active people

International cancer organizations present collaborative work during oncology event in China

One or many? Exploring the population groups of the largest animal on Earth

ETRI-F&U Credit Information Co., Ltd., opens a new path for AI-based professional consultation

[Press-News.org] Supernovae twins open up new possibilities for precision cosmology
Findings will enhance dark energy experiments at major telescopes