PRESS-NEWS.org - Press Release Distribution
PRESS RELEASES DISTRIBUTION

A comprehensive map of the SARS-CoV-2 genome

MIT researchers have determined the virus' protein-coding gene set and analyzed new mutations' likelihood of helping the virus adapt.

2021-05-11
(Press-News.org) CAMBRIDGE, MA -- In early 2020, a few months after the Covid-19 pandemic began, scientists were able to sequence the full genome of the virus that causes the infection, SARS-CoV-2. While many of its genes were already known at that point, the full complement of protein-coding genes was unresolved.

Now, after performing an extensive comparative genomics study, MIT researchers have generated what they describe as the most accurate and complete gene annotation of the SARS-CoV-2 genome. In their study, which appears today in Nature Communications, they confirmed several protein-coding genes and found that a few others that had been suggested as genes do not code for any proteins.

"We were able to use this powerful comparative genomics approach for evolutionary signatures to discover the true functional protein-coding content of this enormously important genome," says Manolis Kellis, who is the senior author of the study and a professor of computer science in MIT's Computer Science and Artificial Intelligence Laboratory (CSAIL) as well as a member of the Broad Institute of MIT and Harvard.

The research team also analyzed nearly 2,000 mutations that have arisen in different SARS-CoV-2 isolates since it began infecting humans, allowing them to rate how important those mutations may be in changing the virus' ability to evade the immune system or become more infectious.

Comparative genomics

The SARS-CoV-2 genome consists of nearly 30,000 RNA bases. Scientists have identified several regions known to encode protein-coding genes, based on their similarity to protein-coding genes found in related viruses. A few other regions were suspected to encode proteins, but they had not been definitively classified as protein-coding genes.

To nail down which parts of the SARS-CoV-2 genome actually contain genes, the researchers performed a type of study known as comparative genomics, in which they compare the genomes of similar viruses. The SARS-CoV-2 virus belongs to a subgenus of viruses called Sarbecovirus, most of which infect bats. The researchers performed their analysis on SARS-CoV-2, SARS-CoV (which caused the 2003 SARS outbreak), and 42 strains of bat sarbecoviruses.

Kellis has previously developed computational techniques for doing this type of analysis, which his team has also used to compare the human genome with genomes of other mammals. The techniques are based on analyzing whether certain DNA or RNA bases are conserved between species, and comparing their patterns of evolution over time.

Using these techniques, the researchers confirmed six protein-coding genes in the SARS-CoV-2 genome in addition to the five that are well established in all coronaviruses. They also determined that the region that encodes a gene called ORF3a also encodes an additional gene, which they name ORF3c. The gene has RNA bases that overlap with ORF3a but occur in a different reading frame. This gene-within-a-gene is rare in large genomes, but common in many viruses, whose genomes are under selective pressure to stay compact. The role for this new gene, as well as several other SARS-CoV-2 genes, is not known yet.

The researchers also showed that five other regions that had been proposed as possible genes do not encode functional proteins, and they also ruled out the possibility that there are any more conserved protein-coding genes yet to be discovered.

"We analyzed the entire genome and are very confident that there are no other conserved protein-coding genes," says Irwin Jungreis, lead author of the study and a CSAIL research scientist. "Experimental studies are needed to figure out the functions of the uncharacterized genes, and by determining which ones are real, we allow other researchers to focus their attention on those genes rather than spend their time on something that doesn't even get translated into protein."

The researchers also recognized that many previous papers used not only incorrect gene sets, but sometimes also conflicting gene names. To remedy the situation, they brought together the SARS-CoV-2 community and presented a set of recommendations for naming SARS-CoV-2 genes, in a separate paper published a few weeks ago in Virology.

Fast evolution

In the new study, the researchers also analyzed more than 1,800 mutations that have arisen in SARS-CoV-2 since it was first identified. For each gene, they compared how rapidly that particular gene has evolved in the past with how much it has evolved since the current pandemic began.

They found that in most cases, genes that evolved rapidly for long periods of time before the current pandemic have continued to do so, and those that tended to evolve slowly have maintained that trend. However, the researchers also identified exceptions to these patterns, which may shed light on how the virus has evolved as it has adapted to its new human host, Kellis says.

In one example, the researchers identified a region of the nucleocapsid protein, which surrounds the viral genetic material, that had many more mutations than expected from its historical evolution patterns. This protein region is also classified as a target of human B cells. Therefore, mutations in that region may help the virus evade the human immune system, Kellis says.

"The most accelerated region in the entire genome of SARS-CoV-2 is sitting smack in the middle of this nucleocapsid protein," he says. "We speculate that those variants that don't mutate that region get recognized by the human immune system and eliminated, whereas those variants that randomly accumulate mutations in that region are in fact better able to evade the human immune system and remain in circulation."

The researchers also analyzed mutations that have arisen in variants of concern, such as the B.1.1.7 strain from England, the P.1 strain from Brazil, and the B.1.351 strain from South Africa. Many of the mutations that make those variants more dangerous are found in the spike protein, and help the virus spread faster and avoid the immune system. However, each of those variants carries other mutations as well.

"Each of those variants has more than 20 other mutations, and it's important to know which of those are likely to be doing something and which aren't," Jungreis says. "So, we used our comparative genomics evidence to get a first-pass guess at which of these are likely to be important based on which ones were in conserved positions."

This data could help other scientists focus their attention on the mutations that appear most likely to have significant effects on the virus' infectivity, the researchers say. They have made the annotated gene set and their mutation classifications available in the University of California at Santa Cruz Genome Browser for other researchers who wish to use it.

"We can now go and actually study the evolutionary context of these variants and understand how the current pandemic fits in that larger history," Kellis says. "For strains that have many mutations, we can see which of these mutations are likely to be host-specific adaptations, and which mutations are perhaps nothing to write home about."

INFORMATION:

The research was funded by the National Human Genome Research Institute and the National Institutes of Health. Rachel Sealfon, a research scientist at the Flatiron Institute Center for Computational Biology, is also an author of the paper.



ELSE PRESS RELEASES FROM THIS DATE:

Boosting body heat production: A new approach for treating obesity

Boosting body heat production: A new approach for treating obesity
2021-05-11
A receptor that helps conserve energy when food is scarce may be the key to a safer approach to treating diet-induced obesity, research led by the Garvan Institute of Medical Research has revealed. In a study using experimental models and fat tissue biopsies from obese individuals, the team revealed that blocking a specific receptor of the molecule neuropeptide Y (NPY), which helps our body regulate its heat production, could increase fat metabolism and prevent weight gain. "The Y1 receptor acts as a 'brake' for heat generation in the body. In our study, we found that blocking this receptor in fat tissues transformed the 'energy-storing' fat into 'energy-burning' fat, which ...

1.5°C degrowth scenarios suggest need for new mitigation pathways: Research

1.5°C degrowth scenarios suggest need for new mitigation pathways: Research
2021-05-11
The first comprehensive comparison of 'degrowth' scenarios with established pathways to limit climate change highlights the risk of over-reliance on carbon dioxide removal, renewable energy and energy efficiency to support continued global growth - which is assumed in established global climate modelling. Degrowth focuses on the global North and is defined as an equitable, democratic reduction in energy and material use while maintaining wellbeing. A decline in GDP is accepted as a likely outcome of this transition. The new modelling by the University of Sydney and ETH Zürich includes high growth/technological change and scenarios summarised ...

Hidden within African diamonds, a billion-plus years of deep-earth history

Hidden within African diamonds, a billion-plus years of deep-earth history
2021-05-11
Diamonds are sometimes described as messengers from the deep earth; scientists study them closely for insights into the otherwise inaccessible depths from which they come. But the messages are often hard to read. Now, a team has come up with a way to solve two longstanding puzzles: the ages of individual fluid-bearing diamonds, and the chemistry of their parent material. The research has allowed them to sketch out geologic events going back more than a billion years--a potential breakthrough not only in the study of diamonds, but of planetary evolution. Gem-quality diamonds are nearly pure lattices of carbon. This elemental purity ...

A beetle's Achilles heel

A beetles Achilles heel
2021-05-11
Saw-toothed grain beetles live in a symbiotic association with bacteria. Their bacterial partners provide important building blocks for the formation of the insect's exoskeleton, which protects the beetles from their enemies as well as from desiccation. In a new study, a team of scientists from the Johannes Gutenberg University in Mainz, the Max Planck Institute for Chemical Ecology in Jena, and the National Institute of Advanced Industrial Science and Technology in Japan demonstrates that glyphosate inhibits the symbiotic bacteria of the grain beetle. Beetles exposed to the weedkiller no longer receive the building blocks they need from the bacteria. The study shows that glyphosate has the potential to harm insects indirectly by targeting their bacterial partners ...

Horseradish flea beetle: Protected with the weapons of its food plant

Horseradish flea beetle: Protected with the weapons of its food plant
2021-05-11
When horseradish flea beetles feed on their host plants, they take up not only nutrients but also mustard oil glucosides, the characteristic defense compounds of horseradish and other brassicaceous plants. Using these mustard oil glucosides, the beetles turn themselves into a "mustard oil bomb" and so deter predators. A team of researchers from the Max Planck Institute for Chemical Ecology in Jena, Germany, has now been able to demonstrate how the beetle regulates the accumulation of mustard oil glucosides in its body. The beetles have special transporters in the excretory system that prevent the excretion of mustard ...

Stabilizer residue in inks found to inhibit conductivity in 3D printed electronic

Stabilizer residue in inks found to inhibit conductivity in 3D printed electronic
2021-05-11
Inks containing metal nanoparticles are among the most commonly-used conductive materials for printed electronics. Ink-jetting layers of MNP materials allows for unpreceded design flexibility, rapid processing and 3D printing of functional electronic devices such as sensors, solar panels, LED displays, transistors and smart textiles. Inkjet 3D printing of metals typically form a solid printed object via a two-step process: solvent evaporation upon printing (pinning) and subsequent low-temperature consolidation of nanoparticles (sintering). The low temperature is important as in many applications the nanoparticles are co-printed with ...

New genetic copycatchers detect efficient and precise CRISPR editing in a living organism

New genetic copycatchers detect efficient and precise CRISPR editing in a living organism
2021-05-11
Researchers at the University of California San Diego have laid the groundwork for a potential new type of gene therapy using novel CRISPR-based techniques. Working in fruit flies and human cells, research led by UC San Diego Postdoctoral Scholar Zhiqian Li in Division of Biological Sciences Professor Ethan Bier's laboratory demonstrates that new DNA repair mechanisms could be designed to address the effects of debilitating diseases and damaged cell conditions. The scientists developed a novel genetic sensor called a "CopyCatcher," which capitalizes on CRISPR-based gene drive technology, to detect instances in which a genetic element is copied precisely from one chromosome to another throughout cells in ...

Sex cells in parasites are doing their own thing

Sex cells in parasites are doing their own thing
2021-05-11
Researchers at the University of Bristol have discovered how microbes responsible for human African sleeping sickness produce sex cells. In these single-celled parasites, known as trypanosomes, each reproductive cell splits off in turn from the parental germline cell, which is responsible for passing on genes. Conventional germline cells divide twice to produce all four sex cells - or gametes - simultaneously. In humans four sperms are produced from a single germline cell. So, these strange parasite cells are doing their own thing rather than sticking to ...

Study shows how our brains sync hearing with vision

2021-05-11
Every high-school physics student learns that sound and light travel at very different speeds. If the brain did not account for this difference, it would be much harder for us to tell where sounds came from, and how they are related to what we see. Instead, the brain allows us to make better sense of our world by playing tricks, so that a visual and a sound created at the same time are perceived as synchronous, even though they reach the brain and are processed by neural circuits at different speeds. One of the brain's tricks is temporal recalibration: ...

Low temperature physics gives insight into turbulence

Low temperature physics gives insight into turbulence
2021-05-11
A novel technique for studying vortices in quantum fluids has been developed by Lancaster physicists. Andrew Guthrie, Sergey Kafanov, Theo Noble, Yuri Pashkin, George Pickett and Viktor Tsepelin, in collaboration with scientists from Moscow State University, used tiny mechanical resonators to detect individual quantum vortices in superfluid helium. Their work is published in the current volume of Nature Communications. This research into quantum turbulence is simpler than turbulence in the real world, which is observed in everyday phenomena such as surf, fast flowing rivers, billowing storm clouds, or chimney smoke. Despite ...

LAST 30 PRESS RELEASES:

Study shows alcohol-dependent men and women have different biochemistries, so may need different treatments

Researchers find that Antidepressants may improve brain function

Aviation can achieve Net-Zero by 2050 if immediate action is taken, says University of Cambridge report

Study shows psychedelic drug psilocybin gives comparable long-term antidepressant effects to standard antidepressants, but may offer additional benefits

Study finds symptoms of depression during pregnancy linked to specific brain activity: scientists hope to develop test for “baby blues” risk

Sexual health symptoms may correlate with poor adherence to adjuvant endocrine therapy in Black women with breast cancer

Black patients with triple-negative breast cancer may be less likely to receive immunotherapy than white patients

Affordable care act may increase access to colon cancer care for underserved groups

UK study shows there is less stigma against LGBTQ people than you might think, but people with mental health problems continue to experience higher levels of stigma

Bringing lost proteins back home

Better than blood tests? Nanoparticle potential found for assessing kidneys

Texas A&M and partner USAging awarded 2024 Immunization Neighborhood Champion Award

UTEP establishes collaboration with DoD, NSA to help enhance U.S. semiconductor workforce

Study finds family members are most common perpetrators of infant and child homicides in the U.S.

Researchers secure funds to create a digital mental health tool for Spanish-speaking Latino families

UAB startup Endomimetics receives $2.8 million Small Business Innovation Research grant

Scientists turn to human skeletons to explore origins of horseback riding

UCF receives prestigious Keck Foundation Award to advance spintronics technology

Cleveland Clinic study shows bariatric surgery outperforms GLP-1 diabetes drugs for kidney protection

Study reveals large ocean heat storage efficiency during the last deglaciation

Fever drives enhanced activity, mitochondrial damage in immune cells

A two-dose schedule could make HIV vaccines more effective

Wastewater monitoring can detect foodborne illness, researchers find

Kowalski, Salonvaara receive ASHRAE Distinguished Service Awards

SkAI launched to further explore universe

SLU researchers identify sex-based differences in immune responses against tumors

Evolved in the lab, found in nature: uncovering hidden pH sensing abilities

Unlocking the potential of patient-derived organoids for personalized sarcoma treatment

New drug molecule could lead to new treatments for Parkinson’s disease in younger patients

Deforestation in the Amazon is driven more by domestic demand than by the export market

[Press-News.org] A comprehensive map of the SARS-CoV-2 genome
MIT researchers have determined the virus' protein-coding gene set and analyzed new mutations' likelihood of helping the virus adapt.