(Press-News.org) A study using a mouse model of eccentric contraction (*1) has revealed that icing injured muscles delays muscle regeneration. The discovery was made by a research group including Associate Professor ARAKAWA Takamitsu and then PhD. Student KAWASHIMA Masato from Kobe University's Graduate School of Health Sciences, and Chiba Institute of Technology's Associate Professor KAWANISHI Noriaki et al. In addition, the researchers illuminated that this phenomenon may be related to pro-inflammatory macrophages' (*2, 3, 4) ability to infiltrate damaged cells. This research raises questions as to whether or not severe muscle injuries (such as torn muscles) should be iced.
These research results were published online as one of the Journal of Applied Physiology's Articles in Press on March 25, 2021.
Main points
The research results revealed that applying an ice pack to a severe muscle injury resulting from eccentric contraction may prolong the time it takes to heal.
The cause of this phenomenon is that icing delays the arrival of pro-inflammatory macrophages, which are responsible for the phagocytosis (*5), or removal, of damaged tissue. Furthermore, this makes difficult for the macrophages to sufficiently infiltrate the damaged muscle cells.
Research Background
Skeletal muscle injuries encompass a range of damage to muscles; from a microcellular level to a severe level. These injuries include not only those that happen during sports or schools' physical education lessons but also external injuries that occur as a result of accidents and disasters.
'RICE treatment' is a common approach for skeletal muscle injuries, regardless of the extent of the injury. This acronym stands for Rest, Ice, Compression and Elevation and is often used in physical education, sports and even medicine. Ice is commonly applied regardless of the type of muscle injury, yet little is known about the long-term effects of icing.
Ice is used to suppress inflammation, however, inflammation in response to tissue injury is one of the body's healing mechanisms. This has come to be understood as a vital response for tissue regeneration. In other words, suppressing inflammation with ice may also inhibit the body's attempt to repair itself.
Experiments investigating the effect of icing muscles after injury have produced conflicting results. Some have reported that it delays muscle regeneration while others have stated that it doesn't inhibit this process. However, none of the research up until now has investigated the effects of icing using an injury model that mimics common sports injuries caused by muscle contraction.
Using a mouse model of eccentric contraction injury, the current research team decided to observe the effects of post-injury icing. In this mouse model, injuries were induced to resemble severe torn muscles.
Research Methodology and Results
Eccentric contraction was induced by electrically stimulating the leg muscles of the mice and then exerting a stronger force during this stimulation to make the leg muscles move in the opposite direction. After this, the muscles were harvested. Icing was performed by placing polyurethane bags of ice on top of the skin over three 30 minute sessions per day, with each session being 2 hours apart. This was continued until two days after the injury. The icing was based on the usual clinically recommended method.
The researchers investigated the regenerated skeletal muscle two weeks after injury, comparing the icing group with the non-icing group. A significantly higher percentage of smaller regenerated muscle fibers were found in cross-sections from the icing group, with a greater number of medium to large fibers in the non-icing group (Figure 1). In other words, this revealed that skeletal muscle regeneration may be delayed as a result of icing.
Next, the researchers periodically took samples of muscle from the icing and non-icing groups of animals in order to investigate what was happening in the regeneration process up until this point.
In the regeneration process, inflammatory cells gather at the site of the injury, remove the debris from the damaged muscle and then begin to build new muscle. However, the results revealed that it is harder for inflammatory cells to enter the injured muscle cells if ice is applied (Figure 2).
Macrophages are typical of the inflammatory cells that enter the injured muscle. These consist of pro-inflammatory macrophages, which phagocyte damaged tissue thus causing inflammation, and anti-inflammatory macrophages (*6), which suppress the inflammatory reaction and promote repair. It is thought that pro-inflammatory macrophages change their characteristics, becoming anti-inflammatory. The results of this research team's experiments showed that icing delays the arrival of pro-inflammatory macrophages at the site of the injury (Figure 3).
These results indicate the possibility that macrophages are unable to sufficiently phagocyte the damaged muscle when ice is applied after severe muscle injuries caused by eccentric contraction, consequently delaying the formation of new muscle cells.
Comment from Associate Professor Arakawa
In sports, the mantra of immediately applying ice to an injury is commonplace, regardless of the injury's severity. However, the mechanism that we illuminated through this research suggests that not icing a severe muscle injury may lead to faster recovery. The idea of immediately cooling any type of injury is also entrenched in schools' physical education classes. I hope that in the future, the alternative option of speeding up recovery by not cooling severe muscle injuries will become known.
However, even though icing may disrupt the recovery process for severe muscle injuries, there is no denying the possibility that there are degrees of mild muscle injuries that can be iced. The next issue is to work out where to draw the line. We are now in the middle of investigating what effect icing has on slight muscle injuries.
Next, we will continue to investigate how icing should be carried out according to the extent of the muscle injury. We aim to contribute guidelines that will enable people in sports and clinical rehabilitation to make accurate judgements about whether or not to ice an injury.
INFORMATION:
These research results were also published in The New York Times on April 21, 2021.
Glossary
1. Eccentric contraction: Normally, muscles get shorter when they contract. Eccentric contraction is when the opposite happens and the muscles lengthen as they contract. This can occur due to strenuous activity, which overburdens the muscles and can easily cause injury.
2. Macrophage: A type of white blood cell found in the blood. There are two known types of macrophage: pro-inflammatory and anti-inflammatory.
3. Pro-inflammatory macrophage: These are macrophages that immediately gather at the site of a tissue injury after it occurs. They phagocytose the damaged tissue and trigger inflammation.
4. Inflammation: A pathological reaction that occurs when living tissue is damaged. Symptoms include rubefaction (reddening of the skin), feverishness, swelling and pain.
5. Phagocytosis: When macrophages surround and remove damaged tissue.
6. Anti-inflammatory macrophage: It is said that inflammatory macrophages change into this type. They suppress inflammation and recruit substances for tissue repair.
Acknowledgements
This research received funding from the Japan Society for the Promotion of Science (JSPS KAKENHI grant number JP17K01501).
Journal Information
Title:
"Icing after eccentric contraction-induced muscle damage perturbs the disappearance of necrotic muscle fibers and phenotypic dynamics of macrophages in mice"
DOI: 10.1152/japplphysiol.01069.2020
Authors:
Masato Kawashima, Noriaki Kawanishi, Takaki Tominaga, Katsuhiko Suzuki, Anna Miyazaki, Itsuki Nagata, Makoto Miyoshi, Motoi Miyakawa, Tohma Sakuraya, Takahiro Sonomura, Takamitsu Arakawa
Journal:
Journal of Applied Physiology
Robust data and genetic research are providing important evidence on a colony of wild African vervet monkeys that landed in Dania Beach more than 70 years ago and settled in a thick mangrove forest near the Fort Lauderdale-Hollywood International Airport in South Florida.
The non-native vervet monkey (Chlorocebus sabaeus) population living in this urban coastal region is well known and beloved among local residents and city officials; however, it is relatively unknown to primatologists. Despite wide public interest, there has been only one scientific study (early 1990s), suggesting that the monkeys escaped from a failed roadside zoo in the 1950s and 1970s. Until now, there was no confirmation about ...
Scientists from Hokkaido University have developed a rapid, efficient protocol for cross-coupling reactions, vastly expanding the pool of chemicals that can be used for the synthesis of useful organic compounds.
Chemical reactions are a vital process in the synthesis of products for a diversity of purposes. For the most part, these reactions are carried out in the liquid phase, by dissolving the reactants in a solvent. However, there are a significant number of chemicals that are partially or completely insoluble, and thus have not been used for synthesis. The starting materials required for the synthesis of many cutting-edge organic materials--such as organic semiconductors and luminescent materials--are often poorly soluble, leading to problems in solution-based synthesis. Therefore, ...
Vaccines are turning the tide of the pandemic, but the risk of infection is still present in some situations. If you want to visit a friend, get on a plane, or go see a movie, there is no highly accurate, instant test that can tell you right then and there whether or not you have a SARS-CoV-2 infection. But new research from Lawrence Berkeley National Laboratory (Berkeley Lab) could help get reliable instant tests on the market.
A study led by Michal Hammel and Curtis D. Hodge suggests that a highly sensitive lateral flow assay - the same type of device used in home pregnancy tests - could be developed using pairs of rigid antibodies that bind to the SARS-CoV-2 nucleocapsid protein. Such a test would only require a small drop of mucus or saliva, could give results ...
The first-ever discovery of an extraterrestrial radioactive isotope on Earth has scientists rethinking the origins of the elements on our planet.
The tiny traces of plutonium-244 were found in ocean crust alongside radioactive iron-60. The two isotopes are evidence of violent cosmic events in the vicinity of Earth millions of years ago.
Star explosions, or supernovae create many of the heavy elements in the periodic table, including those vital for human life, such as iron, potassium and iodine.
To form even heavier elements, such as gold, uranium and plutonium it was thought that a more violent event may be needed, such as two neutron stars merging.
However, a study led by Professor Anton Wallner from The Australian National University (ANU) suggests ...
A rigorous meta-analysis of randomized clinical trials (RCTs) that compared the effects of medical therapies alone with medical therapies plus revascularization in patients with stable ischemic heart disease (SIHD) was presented at EuroPCR on May 18, 2021. The study concluded that adding revascularization was associated with a statistically important reduction in cardiovascular death associated with a statistically important reduction in spontaneous myocardial infarction (MI), providing a biologically plausible explanation for the observed benefit.
An international group of investigators performed a meta-analysis of RCTs conducted between 1979 and 2020. Strict entry criteria were established to assure the analysis was restricted to studies involving elective, ...
When it comes sharing recipes on social media, what users post, and what they cook may be two entirely different things. That's the conclusion of a END ...
An international team of scientists from the Menzies Health Institute Queensland (MHIQ) at Griffith University and from City of Hope, a research and treatment center for cancer, diabetes and other life-threatening diseases in the U.S., have developed an experimental direct-acting antiviral therapy to treat COVID-19.
Traditional antivirals reduce symptoms and help people recover earlier. Examples include Tamiflu®, zanamivir and remdesivir.
This next-generation antiviral approach used gene-silencing RNA technology called siRNA (small-interfering RNA) to attack the virus' genome directly, which stops ...
ATLANTA - MAY 18, 2021 - A new study finds breast cancer survivors in general have higher risk of new cancer diagnosis compared to healthy individuals. The article, which appears in CANCER, states that compared to the general population in the United States, the risk of new cancer diagnoses among survivors was 20% higher for those with hormone receptor (HR) positive cancers and 44% higher for those with HR-negative cancers.
Breast cancer is the most commonly diagnosed and prevalent cancer among women in the U.S., with over 3.9 million living breast cancer survivors as of 2019. The number of survivors is expected to increase with the aging population and advances in breast cancer treatment.
Subsequent primary cancer (SPC) after breast cancer is a well-known late effect, but the ...
PULLMAN, Wash. - Alterations in the epigenetic programming of hatchery-raised steelhead trout could account for their reduced fertility, abnormal health and lower survival rates compared to wild fish, according to a new Washington State University study.
The study, published May 18 in Environmental Epigenetics, establishes a link between feeding practices that promote faster growth, as well as other environmental factors in fish hatcheries, and epigenetic changes found in the sperm and red blood cells of of steelhead trout.
The research was done at a national fish hatchery on the Methow River in Winthrop, Washington and at another hatchery ...
An international research team headed by Michal Hocek of the Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences (IOCB Prague) and Charles University and Ciara K. O'Sullivan of Universitat Rovira i Virgili (URV) in Spain have developed a novel method for labeling DNA, which in the future can be used for sequencing DNA by means of electrochemical detection. The researchers presented their results in the Journal of the American Chemical Society.
A DNA molecule comprises four basic building blocks, nucleotides. The genetic information carried within the molecule is determined by the order of the nucleotides. Knowledge of the order of these building blocks, which is known ...