New catalyst proved efficient to electrosynthesis of ammonia
2021-05-18
(Press-News.org) In a recent research, researchers led by Prof. ZHANG Haimin from the Institute of Solid State Physics of the Hefei Institutes of Physical Science (HFIPS) realized the synthesis of Mo single atoms anchored on activated carbon (Mo-SAs/AC) by the formed Mo-Ox bonds. The result was published on Chemical Communications.
According to the researchers, this new oxygen-coordinated molybdenum single atom catalyst was proved efficient to electrosynthesis of ammonia. The O-coordinated environment in this study, different from N-coordinated environment reported before, provided the sites to anchor Mo single atoms and form Mo-Ox sites, which could be used as the active centers for the adsorption and activation of N2, resulting in high nitrogen reduction reaction (NRR) activity.
"We have been curious about the key to the high NRR catalytic activity," said GENG Jing, first author of the study, "then we found the Mo-Ox site in the catalyst."
In this research, the surface-rich oxygen functional groups of pre-treated activated carbon played an important role in capturing the Mo precursor, forming Mo-O coordination to anchor Mo atoms as the catalytic active sites.
As a result, in Na2SO4 electrolyte, the Mo-SAs/AC can produce ammonia and attain a faradaic efficiency with high stability and good durability.
This work would be very helpful for designing and developing oxygen-coordinated single atom NRR electrocatalysts for high efficiency electrosynthesis of ammonia.
This work was financially supported by the National Key R&D Program of China, the Natural Science Foundation of China, the China Postdoctoral Science Foundation, and the HFIPS Director's Fund.
INFORMATION:
[Attachments] See images for this press release:
ELSE PRESS RELEASES FROM THIS DATE:
2021-05-18
A new software tool developed by Earlham Institute researchers will help bioinformaticians improve the quality and accuracy of their biological data, and avoid mis-assemblies. The fast, lightweight, user-friendly tool visualises genome assemblies and gene alignments from the latest next generation sequencing technologies.
Called Alvis, the new visualisation tool examines mappings between DNA sequence data and reference genome databases. This allows bioinformaticians to more easily analyse their data generated from common genomics tasks and formats by producing efficient, ready-made vector images.
First author and post-doctoral scientist at the Earlham Institute Dr Samuel Martin in the Leggett Group, said: "Typically, alignment tools output plain ...
2021-05-18
One day in the near future dyes in electric motors might indicate when cable insulation is becoming brittle and the motor needs replacing. Scientists at Martin Luther University Halle-Wittenberg (MLU), together with ELANTAS, a division of the specialty chemicals group ALTANA, have developed a new process that enables the dyes to be directly integrated into the insulation. By changing colour, they reveal how much the insulating resin layer around the copper wires in the motor has degraded. The results were published in the journal "Advanced Materials".
Modern combustion engines have long had detectors that recognise, for example, when an oil change is needed, saving unnecessary inspections. Electric motors also show signs of wear. Inside, ...
2021-05-18
Combining natural salt marsh habitats with conventional dikes may provide a more sustainable and cost-effective alternative for fully engineered flood protection. Researchers of the University of Groningen (UG) and the Royal Netherlands Institute for Sea Research (NIOZ) studied how salt marsh nature management can be optimized for coastal defence purposes. They found that grazing by both cattle and small herbivores such as geese and hare and artificial mowing can reduce salt marsh erosion, therefore contributing to nature-based coastal defence.
People around the world live in coastal areas that are ...
2021-05-18
Recently, Prof. WANG Junfeng from the High Magnetic Field Laboratory of the Hefei Institutes of Physical Science (HFIPS), together with international scholars, developed a novel circular permutated light-oxygen-voltage 2 (LOV2) to expand the repertoire of genetically encoded photoswitches, which will accelerate the design of novel optogenetic devices. The result was published in Nature Chemical Biology.
LOV2 domain is a blue light-sensitive photoswitch. In a typical LOV2-based optogenetic device, an effector domain is fused after the C-terminal Jα helix of LOV2, intending to cage the effector via steric hindrance in the dark. On photostimulation, light-triggered unfolding of the Jα helix exposes the effector domain to restore its function. Crafting a LOV2-based ...
2021-05-18
With the rise of the digital age, the amount of WiFi sources to transmit information wirelessly between devices has grown exponentially. This results in the widespread use of the 2.4GHz radio frequency that WiFi uses, with excess signals available to be tapped for alternative uses.
To harness this under-utilised source of energy, a research team from the National University of Singapore (NUS) and Japan's Tohoku University (TU) has developed a technology that uses tiny smart devices known as spin-torque oscillators (STOs) to harvest and convert wireless radio frequencies into energy ...
2021-05-18
A new study may have uncovered why wall lizards have become the most successful reptile in the Mediterranean region. The results reveal how drastic changes in sea levels and climate 6 million years ago affected species formation in the area. The researchers believe they can now explain why the lizards became so diverse and widespread, something that has puzzled biologists since the 19th century. The study is published in Nature Communications.
The evolution of wall lizards offers clues on how major events in the Mediterranean climate and geology millions of years ago affected how species formed or became extinct, and also paved the way for biodiversity.
Wall lizards date back around 20 million years. However, ...
2021-05-18
A University of Surrey project has revealed innovative methods that could dramatically improve the performance of future electrical vehicles (e-vehicles).
As part of the European Union's STEVE* project, Surrey has developed several pioneering approaches to torque vectoring in electric vehicles.
In e-vehicles with multiple motors, it is possible to deliver different amounts of drive power to each wheel. This benefits the vehicles' power consumption, safety and driveability. The process of calculating and optimising the precise amount of power needed while the vehicle ...
2021-05-18
To support growing human and animal life, freshwater sources must continuously supply water. Freshwater from lakes, rivers, and underground is mainly recharged by rainfall. Ground reservoirs can store rainwater over time, depending on that location's storage capability. However, estimating freshwater storage capability (FSC) is still a challenge due to few observation opportunities and methods to measure and quantify FSC.
Prof. Xing Yuan and his Ph.D. student Enda Zhu, from the Institute of Atmospheric Physics at the Chinese Academy of Sciences, developed and applied a new metric that characterizes the "inertia" of water after rainfall. This method allows better ...
2021-05-18
A research group at the University of Córdoba studied the molecular properties of the holm oak (Quercus ilex) in search of trees that are more resistant to drought and root rot.
One of the biggest problems affecting holm oaks is drought. The holm oak (Quercus ilex) boasts a high natural adaptability and resistance to inclement weather conditions in dry environments with high temperatures. However, drought is one of the main causes of mortality in holm oak plantations, with "drought stress" also an important factor contributing to root rot.
This is a multifactorial syndrome that causes the decay and death of holm oaks, consisting of a combination ...
2021-05-18
Scientists have developed a mathematical model that predicts how the number and effects of bacterial mutations leading to drug resistance will influence the success of antibiotic treatments.
Their model, described today in the journal eLife, provides new insights on the emergence of drug resistance in clinical settings and hints at how to design novel treatment strategies that help avoid this resistance occurring.
Antibiotic resistance is a significant public health challenge, caused by changes in bacterial cells that allow them to survive drugs that ...
LAST 30 PRESS RELEASES:
[Press-News.org] New catalyst proved efficient to electrosynthesis of ammonia