(Press-News.org) Philadelphia, May 19, 2021 - A multidisciplinary team of researchers from Children's Hospital of Philadelphia (CHOP) and the Perelman School of Medicine at the University of Pennsylvania (Penn) showed how the "batteries" of cells are highly implicated in whether patients with the chromosome 22q11.2 deletion syndrome develop schizophrenia. The results of the study may eventually lead to targeted prevention and treatment strategies for patients with the condition.
The findings were published today in JAMA Psychiatry.
22q11.2 deletion syndrome (22q) is a chromosomal difference that occurs in approximately one out of every 2,000 births and is associated with varying degrees of medical issues affecting every system in the body, including the developing heart, immune system, palate, and brain. 22q is also associated with behavioral health challenges such as attention deficit hyperactive disorder, autism spectrum disorder and anxiety. These symptoms can be observed during childhood and can present as psychiatric illness in older adolescents and adults. In fact, this group is roughly 25 times more likely to develop schizophrenia than those in the general population, providing an opportunity to understand the genetic cause of the condition and develop novel therapeutics to treat it.
In a prior study, CHOP researchers studied stem cell-derived neurons and demonstrated that, compared with healthy controls, patients with 22q and schizophrenia had mitochondrial dysfunction. However, that study did not account for 22q patients who had not developed schizophrenia.
"Schizophrenia is a very complex mental health disorder, and it can be particularly debilitating for patients with 22q when coupled with a myriad of other health challenges," said senior study author Stewart A. Anderson, MD, Director of Research in the department of Child and Adolescent Psychiatry and Behavioral Services and associate director of the Lifespan Brain Institute at CHOP and Penn. "In this most recent study, it was important to define the role mitochondria play in determining which patients with 22q - particularly teenagers - are likely to develop schizophrenia."
Using different lines of stem cells than were used for the prior study, the researchers compared mitochondrial function and the expression of related genes from adults with 22q and a control group, with the 22q group including neurons from individuals with and without a schizophrenia diagnosis.
The researchers showed again that mitochondrial function was impacted in patients with 22q and a schizophrenia diagnosis, with reduced levels of ATP, a major energy source for cells produced largely by mitochondria. However, ATP levels were not reduced in patients with 22q who were not diagnosed with schizophrenia. In fact, the expression of multiple genes encoding for oxidative phosphorylation, a process that helps produce ATP, was upregulated compared with both the 22q and schizophrenia group and the control group. These findings suggest that increased mitochondrial biogenesis is associated with the absence of schizophrenia in 22q.
"Bioenergetics and mitochondria have historically not been thought to play a significant role in autism spectrum disorders and schizophrenia, but our findings from this study coupled with previous findings show that mitochondrial dysfunction may play an important role in these neuropsychiatric disorders," said co-author Douglas C. Wallace, PhD, Director of the Center for Mitochondrial and Epigenomic Medicine at CHOP. "Recognizing the role of mitochondrial dysfunction in neuropsychiatric disorders may lead to the development of better diagnostic tools as well as targeted treatments for patients with 22q-associated schizophrenia."
"Patients with 22q present with a wide variety of symptoms, and while our team helps families navigate these challenges across many different medical specialties, the sheer number of associated features can significantly impact both the patients and their families' lives - with behavioral health being the most complex and difficult to manage," said co-author Donna M. McDonald-McGinn, MS, CGC, Director of the 22q and You Center and Associate Director of Clinical Genetics Center at CHOP. "The more we know about how each individual is affected at a deeper genomic level, the more resources we can provide to families, while pivoting future research efforts towards finding new ways to help our patients, as well as those in the general population with schizophrenia but without 22q."
INFORMATION:
This work was supported by National Institutes of Health grants MH110185, MH066912, MH108592, MH110185, MH191719, MH087636, MH119738, MH119737, MH119219, and MH101718, and the Penn/CHOP Lifespan Brain Institute.
Li et al, "Association of Mitochondrial Biogenesis With Variable Penetrance of Schizophrenia." JAMA Psychiatry, online May 19, 2021. DOI: 10.1001/jamapsychiatry.2021.0762.
About Children's Hospital of Philadelphia: Children's Hospital of Philadelphia was founded in 1855 as the nation's first pediatric hospital. Through its long-standing commitment to providing exceptional patient care, training new generations of pediatric healthcare professionals, and pioneering major research initiatives, Children's Hospital has fostered many discoveries that have benefited children worldwide. Its pediatric research program is among the largest in the country. In addition, its unique family-centered care and public service programs have brought the 595-bed hospital recognition as a leading advocate for children and adolescents. For more information, visit http://www.chop.edu.
The common skin disease atopic eczema (AE) impacts heavily on the life quality and general health of sufferers. Researchers at Karolinska Institutet in Sweden have now evaluated its treatment with internet-delivered cognitive behavioural therapy (iCBT). The study suggests that patients feel better after iCBT compared with a control group who received only traditional treatment. The results, which are published in JAMA Dermatology, might eventually make important care available to a large patient group.
"We've carried out a promising pilot study but were still surprised at how effective internet-delivered CBT ...
A pioneering new study led by UCL scientists has revealed, for the first time, a layer of genetic material involved in controlling the production of tau; a protein which plays a critical role in serious degenerative conditions, such as Parkinson's and Alzheimer's disease.
The international research, conducted in mice and cells, also revealed this material is part of a larger family of non-coding genes* which control and regulate other similar brain proteins, such as beta-amyloid associated with Alzheimer's and alpha-synuclein implicated in Parkinson's disease and Lewy body dementia.
Researchers say the breakthrough findings, ...
Base editing is a novel gene editing approach that can precisely change individual building blocks in a DNA sequence. By installing such a point mutation in a specific gene, an international research team led by the University of Zurich has succeeded in sustainably lowering high LDL cholesterol levels in the blood of mice and macaques. This opens up the possibility of curing patients with inherited metabolic liver diseases.
Lipoproteins are complex particles that deliver fat molecules to all tissues of the body through the blood system, supplying energy to the cells. One such lipoprotein, the low-density lipoprotein (LDL), can transport thousands of fat molecules, such as cholesterol, per particle. High levels of LDL in the blood are clinically associated with an ...
Wednesday 19 May 2021 - New research published today sheds important light on how the production of a key protein in the brain is controlled, which could pave the way for new treatments for a wide range of neurological conditions.
In a study part-funded by Parkinson's UK, researchers investigated a section of genetic material known as antisense long non-coding RNA (lncRNA), which helps fine-tune the production of the protein tau inside brain cells. This precision in tau regulation is crucial for smooth functioning of the nerve cells.
Understanding the mechanism ...
Unbound nickel atoms and other heavy elements have been observed in very hot cosmic environments, including the atmospheres of ultra-hot exoplanets and evaporating comets that ventured too close to our Sun or other stars. A new study conducted by JU researchers reveals the presence of nickel atoms in the cold gasses surrounding the interstellar comet 2I/Borisov. The team's finding is being published in Nature on 19 May 2021.
Interstellar comets and asteroids are precious to science because, unlike millions of minor bodies that formed in our Solar System, they originate from distant planetary systems. Until very recently, the existence of such cosmic vagabonds has merely ...
HOUSTON - (May 19, 2021) - A new study from researchers at Rice University has found that bodily inflammation after the death of a spouse can predict future depression.
"Inflammation and future depressive symptoms among recently bereaved spouses" will appear in the June 2021 edition of the journal Psychoneuroendocrinology. Lead author Lydia Wu, a Rice psychology graduate student, and Christopher Fagundes, associate professor of psychology and principal investigator for the Biobehavioral Mechanisms Explaining Disparities (BMED) lab at Rice, led the study. The research team evaluated 99 people who lost their spouses within 2-3 months of the study on a number of factors, including physical ...
PITTSBURGH, May 19, 2021 - Specialized immune cells that accumulate in the brain in the days and weeks after a stroke promote neural functions in mice, pointing to a potential immunotherapy that may boost recovery after the acute injury is over, University of Pittsburgh School of Medicine neurologists found.
The study, published today in the journal Immunity, demonstrated that a population of specialized immune cells, called regulatory T (Treg) cells, serve as tissue repair engineers to promote functional recovery after stroke. Boosting Treg cells using an antibody complex treatment, ...
The yeast Candida albicans can cause itchy, painful urinary tract and vaginal yeast infections. For women in low-resource settings who lack access to healthcare facilities, these infections create substantial social and economic burdens. Now, researchers reporting in ACS Omega have developed color-changing threads that turn bright pink in the presence of C. albicans. When embedded in tampons or sanitary napkins, they could allow women to quickly and discreetly self-diagnose vulvovaginal yeast infections, the researchers say.
According to the Mayo Clinic, about 75% of women will experience a yeast infection, or vulvovaginal candidiasis, at least ...
Researchers have found the elusive genetic element controlling the elongated grains and glumes of a wheat variety identified by the renowned botanist Carl Linnaeus more than 250 years ago.
The findings relating to Polish wheat, Triticum polonicum, could translate into genetic improvements and productivity in the field.
Wheat, in bread, pasta, and other forms, is a vital energy and protein source for humans. Each individual grain is nestled within the glumes and other leaf-like organs called lemma and palea which affect the grain's final size, shape, and weight.
Characterised by Linnaeus in 1762, Polish wheat has long grains, glumes, ...
The sun delivers more energy to Earth in one hour than humanity consumes over an entire year. Scientists worldwide are searching for materials that can cost-effectively and efficiently capture this carbon-free energy and convert it into electricity.
Perovskites, a class of materials with a unique crystal structure, could overtake current technology for solar energy harvesting. They are cheaper than materials used in current solar cells, and they have demonstrated remarkable photovoltaic properties -- behavior that allows them to very efficiently convert sunlight into electricity.
Revealing the nature of perovskites at the atomic scale is critical to understanding their promising capabilities. ...