(Press-News.org) Astronomers using NASA's Hubble Space Telescope have traced the locations of five brief, powerful radio blasts to the spiral arms of five distant galaxies.
Called fast radio bursts (FRBs), these extraordinary events generate as much energy in a thousandth of a second as the Sun does in a year. Because these transient radio pulses disappear in much less than the blink of an eye, researchers have had a hard time tracking down where they come from, much less determining what kind of object or objects is causing them. Therefore, most of the time, astronomers don't know exactly where to look.
Locating where these blasts are coming from, and in particular, what galaxies they originate from, is important in determining what kinds of astronomical events trigger such intense flashes of energy. The new Hubble survey of eight FRBs helps researchers narrow the list of possible FRB sources.
Flash in the Night
The first FRB was discovered in archived data recorded by the Parkes radio observatory on July 24, 2001. Since then astronomers have uncovered up to 1,000 FRBs, but they have only been able to associate roughly 15 of them to particular galaxies.
"Our results are new and exciting. This is the first high-resolution view of a population of FRBs, and Hubble reveals that five of them are localized near or on a galaxy's spiral arms," said Alexandra Mannings of the University of California, Santa Cruz, the study's lead author. "Most of the galaxies are massive, relatively young, and still forming stars. The imaging allows us to get a better idea of the overall host-galaxy properties, such as its mass and star-formation rate, as well as probe what's happening right at the FRB position because Hubble has such great resolution."
In the Hubble study, astronomers not only pinned all of them to host galaxies, but they also identified the kinds of locations they originated from. Hubble observed one of the FRB locations in 2017 and the other seven in 2019 and 2020.
"We don't know what causes FRBs, so it's really important to use context when we have it," said team member Wen-fai Fong of Northwestern University in Evanston, Illinois. "This technique has worked very well for identifying the progenitors of other types of transients, such as supernovae and gamma-ray bursts. Hubble played a big role in those studies, too."
The galaxies in the Hubble study existed billions of years ago. Astronomers, therefore, are seeing the galaxies as they appeared when the universe was about half its current age.
Many of them are as massive as our Milky Way. The observations were made in ultraviolet and near-infrared light with Hubble's Wide Field Camera 3.
Ultraviolet light traces the glow of young stars strung along a spiral galaxy's winding arms. The researchers used the near-infrared images to calculate the galaxies' mass and find where older populations of stars reside.
Location, Location, Location
The images display a diversity of spiral-arm structure, from tightly wound to more diffuse, revealing how the stars are distributed along these prominent features. A galaxy's spiral arms trace the distribution of young, massive stars. However, the Hubble images reveal that the FRBs found near the spiral arms do not come from the very brightest regions, which blaze with the light from hefty stars. The images help support a picture that the FRBs likely do not originate from the youngest, most massive stars.
These clues helped the researchers rule out some of the possible triggers of types of these brilliant flares, including the explosive deaths of the youngest, most massive stars, which generate gamma-ray bursts and some types of supernovae. Another unlikely source is the merger of neutron stars, the crushed cores of stars that end their lives in supernova explosions. These mergers take billions of years to occur and are usually found far from the spiral arms of older galaxies that are no longer forming stars.
Magnetic Monsters
The team's Hubble results, however, are consistent with the leading model that FRBs originate from young magnetar outbursts. Magnetars are a type of neutron star with powerful magnetic fields. They're called the strongest magnets in the universe, possessing a magnetic field that is 10 trillion times more powerful than a refrigerator door magnet. Astronomers last year linked observations of an FRB spotted in our Milky Way galaxy with a region where a known magnetar resides.
"Owing to their strong magnetic fields, magnetars are quite unpredictable," Fong explained. "In this case, the FRBs are thought to come from flares from a young magnetar. Massive stars go through stellar evolution and becomes neutron stars, some of which can be strongly magnetized, leading to flares and magnetic processes on their surfaces, which can emit radio light. Our study fits in with that picture and rules out either very young or very old progenitors for FRBs."
The observations also helped the researchers strengthen the association of FRBs with massive, star-forming galaxies. Previous ground-based observations of some possible FRB host galaxies did not as clearly detect underlying structure, such as spiral arms, in many of them. Astronomers, therefore, could not rule out the possibility that FRBs originate from a dwarf galaxy hiding underneath a massive one. In the new Hubble study, careful image processing and analysis of the images allowed researchers to rule out underlying dwarf galaxies, according to co-author Sunil Simha of the University of California, Santa Cruz.
Although the Hubble results are exciting, the researchers say they need more observations to develop a more definitive picture of these enigmatic flashes and better pinpoint their source. "This is such a new and exciting field," Fong said. "Finding these localized events is a major piece to the puzzle, and a very unique puzzle piece compared to what's been done before. This is a unique contribution of Hubble."
INFORMATION:
The team's results will appear in an upcoming issue of The Astrophysical Journal.
The Hubble Space Telescope is a project of international cooperation between NASA and ESA (European Space Agency). NASA's Goddard Space Flight Center in Greenbelt, Maryland, manages the telescope. The Space Telescope Science Institute (STScI) in Baltimore, Maryland, conducts Hubble science operations. STScI is operated for NASA by the Association of Universities for Research in Astronomy in Washington, D.C.
MEDIA CONTACTS:
Claire Andreoli
NASA's Goddard Space Flight Center, Greenbelt, Maryland
Donna Weaver
Space Telescope Science Institute, Baltimore, Maryland
Ray Villard
Space Telescope Science Institute, Baltimore, Maryland
SCIENCE CONTACTS:
Alexandra Mannings
University of California, Santa Cruz, Santa Cruz, California
Wen-fai Fong
Northwestern University, Evanston, Illinois
According to the Centers for Disease Control and Prevention, approximately 22 percent of older adults in the United States suffer from a functional impairment, defined as difficulties performing daily activities, such as bathing or getting dressed, or problems with concentration or decision-making affected by physical, mental or emotional conditions.
In a new study published in the May 20, 2021 online edition of the American Journal of Preventive Medicine, researchers at University of California San Diego School of Medicine found that functional impairments among adults aged 50 and older are associated with a higher risk of medical cannabis use; and prescription opioid and tranquilizer/sedative use and misuse.
"Our ...
A team of Spanish researchers have developed, at the laboratory level, a prototype of a new biosensor to help detect breast cancer in its earliest stages. One of the team coordinators has been Ramón Martínez Máñez, a professor at the Universitat Politècnica de València (UPV) and the scientific director of the Networking Biomedical Research Centre in Bioengineering, Biomaterials and Nanomedicine (CIBER BBN). The other one has been Ana Lluch, a Valencian oncologist, co-coordinator of the Breast Cancer Biology Research Group ...
Leave voters in Cornwall wanted to exit the EU to "take back control" and express concern about immigration - even though most said the movement of people across the continent had not caused issues for them, a new survey suggests.
A total of 56.5 per cent of people in Cornwall voted to Leave the EU in 2016, yet the area has received some of the highest levels of EU structural funding in England.
There have long been campaigns for Cornwall to have more political autonomy, but hardly anyone who took part in the research said they voted to Leave said they do so to get more power for politicians in the county.
The most frequent reason given, found in 79 responses to the survey, was the UK had lost control to ...
Untreated hepatitis C can lead to serious and life-threatening health problems like cirrhosis and liver cancer. Direct-acting antiviral therapies introduced in recent years are highly effective, with cure rates above 95%.
But most Medicaid beneficiaries with hepatitis C don't get these drugs, which cost $20,000-$30,000, due to state budget constraints.
Now, a new USC study finds that a Medicaid-Medicare partnership could cover the lifesaving medications -- and still save $1 to $1.1 billion over 25 years. Medicaid is a joint federal and state program that provides health coverage for low-income families and others. Medicare is the federal health insurance program for people 65 and older.
The study was published today in the American Journal of Managed Care.
Researchers ...
For coffee drinkers, a common scenario might involve drinking an extra cup only to end up with a racing heart and a subtle reminder to themselves to cut down the caffeine. But for those who have a different thinking pattern, one that includes heart-focused anxiety, the racing heart might conclude with the fear of a heart attack and a trip to the emergency room.
It turns out young Latinx adults who experience heart-focused anxiety could be at greater risk for mental health disorders.
"We have empirical evidence that individual differences in heart-focused anxiety are related to more severe co-occurring anxiety and depressive symptomatology among a ...
MSU researcher is studying, raising awareness about the role of sex in the efficacy of vaccines that make use of nanomedicine.
If there's one take-home message for the general public about the coronavirus vaccines approved in the U.S., it's that they are remarkably effective.
But Michigan State University's Morteza Mahmoudi is raising awareness about an important subtlety: The vaccines developed by Moderna and Pfizer-BioNTech appear to work slightly better for men than for women.
Both vaccines use tiny orbs, or nanoparticles, to deliver their active ingredients to cells in our immune systems. For years, Mahmoudi has been studying how and why nanomedicines -- therapies that use nanoparticles -- can affect patients differently based on their sex and ...
A team of researchers at the University of Ottawa has found a way to use visible light to transform carbon dioxide gas, or CO2, into solid carbon forms that emit light. This development creates a new, low-energy CO2 reduction pathway to solid carbon that will have implications across many fields.
We talked to lead author Dr. Jaspreet Walia, Post-Doctoral Fellow in the School of Electrical Engineering and Computer Science at the University of Ottawa, and research lead Dr. Pierre Berini, uOttawa Distinguished Professor and University Research Chair in Surface Plasmon Photonics, to learn more.
Please tell us about your team's discovery.
Pierre ...
COLUMBIA, Mo. -- Passports are a tangible way of showing where one has traveled, as the stamps provide a chronological order that traces an individual's journey across international borders. When an object's origins are not readily apparent, a variety of sources can be relied upon to learn more, which might include labels, sales receipts, foreign translations, oral histories, GPS coordinates and itemized personal possessions.
That documentation is an example of provenance, or the origins of an object and where it has traveled throughout history. Sarah Buchanan, an assistant professor in the University of Missouri's College of Education, is an archivist, a professional who assesses, collects and preserves various artifacts and archives them ...
Our reliance on fossil fuels as a primary energy source has pushed air pollution to an all-time high, resulting in several environmental and health concerns. Among the major pollutants, nitrogen oxide (NOx) accumulation can cause severe respiratory diseases and imbalance in the Earth's nitrogen cycle. Reducing NOx accumulation is, therefore, an issue of utmost importance.
Recently, the conversion of NOx into harmless or even useful nitrogen products has emerged as a promising strategy. Particularly appealing to scientists is the reduction of NOx to hydroxylamine (NH2OH), which can be utilized ...
A large-scale research project at the University of Alaska Fairbanks Geophysical Institute has revealed insight into the relationship between surface debris on glaciers and the rate at which they melt.
The work is the first global assessment of Earth's 92,033 debris-covered glaciers and shows that debris, taken as a whole, substantially reduces glacier mass loss.
The results will affect sea level rise calculations and allow for improved assessment of hazards faced by nearby communities.
"This is the first step to enable us to start projecting how these debris-covered glaciers are going to evolve in the future and how they're going to affect glacial runoff and sea level rise," said glaciologist ...