(Press-News.org) The work, carried out by Pilar Madrigal and Sandra Jurado, from the UMH-CSIC Neurosciences Institute in Alicante, a joint center of the Spanish National Research Council and Miguel Hernández University, has been published in Communications Biology, a Nature group´s journal.
"Our in-depth analysis of the oxytocin-vasopressin circuit in the mouse brain has revealed that these two molecules have distinct dynamics throughout embryonic development. It is likely that these adaptations modulate the functional properties of different brain regions according to their developmental stage, contributing to the refinement of the neural circuits that are at the basis of social behaviors," explains Dr. Sandra Jurado, director of the Synaptic Neuromodulation Laboratory and the Cell and Systems Neurobiology Unit of the Institute of Neurosciences.
Very similar in structure, oxytocin and vasopressin are two neuropeptides that are evolutionary conserved and are involved in the regulation of complex social behaviors such as maternal care and pair bonding.
Although it is not known how oxytocin and vasopressin modulate brain function, numerous studies in animals and humans suggest that alterations in these circuits may underlie mental disorders characterized by deficits in social interaction, such as autism, anxiety and social aggression or schizophrenia. "For us, it has been very important to identify how these circuits are formed during brain development, in order to detect potential alterations that could be related to social disorders," says Dr. Jurado, who has led the research.
To date, most of the studies to characterize the expression of oxytocin and vasopressin projections have used histological methods and in situ hybridization in brain sections that provide relevant information, but which are difficult to extrapolate to the formation of three-dimensional circuits in the brain.
In addition, most previous work has focused on the rat brain, although an increasing number of studies employ the mouse as an experimental model, highlighting the need for more accurate connectivity maps for this commonly-used species in the laboratory.
MODULATION OF SOCIAL BEHAVIOR
Produced in the hypothalamus, the brain region responsible for controlling essential behaviors for survival, oxytocin acts both as a hormone and as a neurotransmitter. This small, primitive molecule plays an important role in both basic functions such as osmotic balance in invertebrate species and complex behaviors like reproduction and maternal behaviors in humans.
Although oxytocin is best known for increasing muscle contraction during childbirth, it also plays an important role in reproductive and social behaviors. Thanks to this hormone, our brain is able to maintain affective relationships with our peers. And one of the most primitive and strongest in mammals is precisely the close relationship between a mother and her children. Oxytocin is popularly known as the "love hormone", as it promotes social contact, partner preferences and subsequent attachment. It also produces a sense of security and well-being and reduces stress.
Similarly, vasopressin promotes social contact, mate preference and attachment, modulates territorial behaviors towards potential same-sex rivals, increases attraction, as well as sexual and reproductive behaviors.
THE TRANSPARENT BRAIN
In this study, Madrigal and Jurado have implemented the iDISCO+ clarification technique, which allows the removal of a large part of the lipid (fat) content of the brain without damaging its structure, to make it transparent. This method, in combination with light sheet fluorescence microscopy, has allowed the researchers to generate 3D reconstructions with high cellular resolution of the oxytocinergic and vasopressinergic systems of the entire mouse brain, from early development to adulthood.
Thanks to this methodology they have been able to make a precise classification of the cells that synthesize oxytocin and vasopressin in deep brain nuclei, such as the hypothalamus. Interestingly, the Spanish researchers have observed that the various hypothalamic nuclei show marked differences in the expression of oxytocin and vasopressin during embryonic development.
In addition, they have seen a high presence of mixed (oxytocin and vasopressin) cells during early developmental stages, which declines in most hypothalamic nuclei as growth progresses. "It is likely that these dynamic adaptations allow modulation of oxytocin and vasopressin levels in different brain regions according to developmental stage. This change would make possible the refinement of neural circuits that underlie social behaviors," the researchers said.
These adaptations show differences between the mouse and rat brain, making this study a new benchmark for researchers studying social behavior based on murine models, whose neurodevelopment shares many characteristics with the human brain.
INFORMATION:
Madrigal, M.P., Jurado, S. Specification of oxytocinergic and vasopressinergic circuits in the developing mouse brain. Commun Biol 4, 586 (2021). https://doi.org/10.1038/s42003-021-02110-4
Scientists of Tomsk Polytechnic University have developed a nanosensor-based hardware and software complex for measurement of cardiac micropotential energies without filtering and averaging-out cardiac cycles in real time. The device allows registering early abnormalities in the function of cardiac muscle cells, which otherwise can be recorded only during open-heart surgery or by inserting an electrode in a cardiac cavity through a vein. Such changes can lead to sudden cardiac death (SCD). Nowadays, there are no alternatives to the Tomsk device for a number of key characteristics in Russia and the world. The research findings of four-year measurement of cardiac micropotential energies using this device ...
Using magnets, a collaborative group have furthered our understanding of chirality.
Their research was published in the journal Physical Review Letters on April 28, 2021.
Chirality is the lack of symmetry in matter. Human hands, for example, express chirality. A mirror image of your right hand differs from your left, giving it two distinguishable chiral states.
Chirality is an important issue in a myriad of scientific fields, ranging from high-energy physics to biology.
Within our bodies, some molecules, such as amino acids, show only one chiral state. In other words, they are homo-chiral. It is crucial to understand how this information is transferred and ...
Type 2 diabetes patients who also have asthma are benefitting from a diabetes medication, typically given to help the pancreas produce more insulin, that also improves asthma symptoms and may reduce lung and airway inflammation.
These types of medication -- GLP-1 receptor agonists -- are a newer class of FDA-approved therapeutics that are generally used in addition to metformin for control of blood sugar or to induce weight loss in patients with obesity.
Researchers from Vanderbilt University Medical Center, Brigham and Women's Hospital, Harvard Medical School and University Hospital Zurich in Switzerland used electronic health record (EHR) data of patients with asthma and type 2 diabetes who initiated treatment with GLP-1R agonists, finding lower rates of asthma exacerbations ...
'Don't forget the mask' - although most people nowadays follow this advice, professionals express different opinions about the effectiveness of face masks. An international team led by researchers from the Max Planck Institute for Chemistry in Mainz, Germany, has now used observational data and model calculations to answer open questions. The study shows under which conditions and in which way masks actually reduce individual and population-average risks of being infected with COVID-19 and help mitigate the corona pandemic. In most environments and situations, ...
PHILADELPHIA--A five-year community outreach and engagement effort by the Abramson Cancer Center at the University of Pennsylvania (ACC) to increase enrollment of Black patients into cancer clinical trials more than doubled the percentage of participants, improving access and treatment for a group with historically low representation in cancer research. The percentage of patients enrolled into a treatment clinical trial, for example, increased from 12 to 24 percent. A significant increase was also observed in non-therapeutic interventional and non-interventional trials.
The findings were published today in an abstract to be presented at the American Society of Clinical Oncology annual meeting on June 5. (Abstract #100). [ADD ...
New York, NY (May 21, 2021) --Women who were highly exposed to ultra-fine particles in air pollution during their pregnancy were more likely to have children who developed asthma, according to a study published in the American Journal of Respiratory and Critical Care Medicine in May. This is the first time asthma has been linked with prenatal exposure to this type of air pollution, which is named for its tiny size and which is not regulated or routinely monitored in the United States.
Slightly more than 18 percent of the children born to these mothers developed asthma in their preschool years, compared ...
Scientists from Hokkaido University have discovered a novel defensive response to SARS-CoV-2 that involves the viral pattern recognition receptor RIG-I. Upregulating expression of this protein could strengthen the immune response in COPD patients.
In the 18 months since the first report of COVID-19 and the spread of the pandemic, there has been a large amount of research into understanding it and developing menas to treat it. COVID-19 does not affect all infected individuals equally. Many individuals are asymptomatic; of those who are symptomatic, the large majority have mild symptoms, and only a small number have severe cases. The reasons for this are not fully understood and are an important area of ongoing research.
A team of scientists ...
The issue of concern was that the Escherichia coli (E. coli) genome, consisting of 4.6 million base pairs of a single circular DNA, is too large to manipulate following the extraction and transfer to other bacteria.
In the present study, a group of Rikkyo University researchers led by Assistant Professor Takahito Mukai and Professor Masayuki Su'etsugu has succeeded in splitting the E.coli genome into tripartite-genome of 1 million base pairs per genome (split-genome) using the smallest E. coli genome strain established so far. In addition, they successfully extracted the split-genome from bacteria and installed it in other E. ...
All living organisms are equipped with sensory organs to detect changes in their surrounding environment. It may not immediately strike us as obvious but, similar to how we can sense heat, cold, light, and darkness, we are also extremely adept at sensing gravity. In our case, it is our inner ear that does this job, helping us maintain balance, posture, and orientation in space. But, what about other organisms, for instance invertebrates that lack a backbone?
The gravity sensing organ in some aquatic invertebrates, known as a "statocyst," is, in fact, rather fascinating. The statocyst is essentially a fluid-filled sac with sensory cells lining its inner wall and a small, mineralized ...
[Highlights]
- Integrated cyber attack analysis platform "NIRVANA Kai" newly supports IPv6 and enhances its functions.
- Observation of IPv6 communications, collection of IPv6-related alerts, and real-time visualization of IPv6 networks.
- Expected to simplify security operations in IPv6 networks.
[Abstract]
The Cybersecurity Laboratory of the National Institute of Information and Communications Technology (NICT, President: TOKUDA Hideyuki, Ph.D.) has enhanced its cyber attack integrated analysis platform "NIRVANA Kai" to support the Internet Protocol version ...