New quantum material discovered
A research team from TU Wien together with US research institutes came across a surprising form of 'quantum criticality'; this could lead to a design concept for new materials
2021-05-24
(Press-News.org) In everyday life, phase transitions usually have to do with temperature changes - for example, when an ice cube gets warmer and melts. But there are also different kinds of phase transitions, depending on other parameters such as magnetic field. In order to understand the quantum properties of materials, phase transitions are particularly interesting when they occur directly at the absolute zero point of temperature. These transitions are called "quantum phase transitions" or a "quantum critical points".
Such a quantum critical point has now been discovered by an Austrian-American research team in a novel material, and in an unusually pristine form. The properties of this material are now being further investigated. It is suspected that the material could be a so-called Weyl-Kondo semimetal, which is considered to have great potential for quantum technology due to special quantum states (so-called topological states). If this proves to be true, a key for the targeted development of topological quantum materials would have been found. The results were found in a cooperation between TU Wien, Johns Hopkins University, the National Institute of Standards and Technology (NIST) and Rice University and has now been published in the journal Science Advances.
Quantum criticality - simpler and clearer than ever before
"Usually quantum critical behaviour is studied in metals or insulators. But we have now looked at a semimetal," says Prof. Silke Bühler-Paschen from the Institute of Solid State Physics at TU Wien. The material is a compound of cerium, ruthenium and tin - with properties that lie between those of metals and semiconductors.
Usually, quantum criticality can only be created under very specific environmental conditions - a certain pressure or an electromagnetic field. "Surprisingly, however, our semimetal turned out to be quantum critical without any external influences at all," says Wesley Fuhrman, a PhD student in Prof. Collin Broholm's team at Johns Hopkins University, who made an important contribution to the result with neutron scattering measurements. "Normally you have to work hard to produce the appropriate laboratory conditions, but this semimetal provides the quantum criticality all by itself."
This surprising result is probably related to the fact that the behaviour of electrons in this material has some special features. "It is a highly correlated electron system. This means that the electrons interact strongly with each other, and that you cannot explain their behaviour by looking at the electrons individually," says Bühler-Paschen. "This electron interaction leads to the so-called Kondo effect. Here, a quantum spin in the material is shielded by electrons surrounding it, so that the spin no longer has any effect on the rest of the material.''
If there are only relatively few free electrons, as is the case in a semimetal, then the Kondo effect is unstable. This could be the reason for the quantum critical behavior of the material: the system fluctuates between a state with and a state without the Kondo effect, and this has the effect of a phase transition at zero temperature.
Quantum fluctuations could lead to Weyl particles
The main reason why the result is of such central importance is that it is suspected to be closely connected to the phenomenon of "Weyl fermions". In solids, Weyl fermions can appear in the form of quasiparticles - i.e. as collective excitations such as waves in a pond. According to theoretical predictions, such Weyl fermions should exist in this material," says theoretical physicist Qimiao Si of Rice University. Experimental proof, however, is yet to be found. "We suspect that the quantum criticality we observed favours the occurrence of such Weyl fermions," says Silke Bühler-Paschen. "Quantum critical fluctuations could therefore have a stabilising effect on Weyl fermions, in a similar way to quantum critical fluctuations in high-temperature superconductors holding superconducting Cooper pairs together. This is a very fundamental question that is the subject of a lot of research around the world, and we've discovered a hot new lead here."
It seems to us that certain quantum effects - namely quantum critical fluctuations, the Kondo effect and Weyl fermions - are tightly intertwined in the newly discovered material and, together, give rise to exotic Weyl-Kondo states. These are "topological" states of great stability that, unlike other quantum states, cannot be easily destroyed by external disturbances. This makes them particularly interesting for quantum computers.
To verify all this, further measurements under different external conditions are to be carried out. The team expects that a similar interplay of the various quantum effects should also be found in other materials. "This could lead to the establishment of a design concept with which such materials can be specifically improved, tailored and used for concrete applications," says Bühler-Paschen.
INFORMATION:
Contact
Prof. Silke Bühler-Paschen
Institute for Solid State Physics
TU Wien
+43-1-58801-13716
silke.buehler-paschen@tuwien.ac.at
[Attachments] See images for this press release:
ELSE PRESS RELEASES FROM THIS DATE:
2021-05-24
A membrane made from threads of a polymer commonly used in vascular sutures can be loaded with therapeutic drugs and implanted in the body, where mechanical forces activate the polymer's electric potential and slowly release the drugs.
The novel system, developed by a group led by bioengineers at UC Riverside and published in ACS Applied Bio Materials, overcomes the biggest limitations of conventional drug administration and some controlled release methods, and could improve treatment of cancer and other chronic diseases.
The drawbacks of conventional drug administration include repeated administration, nonspecific biodistribution ...
2021-05-24
For the first time, researchers have observed plasma jets interacting with magnetic fields in a massive galaxy cluster 600 million light years away, thanks to the help of radio telescopes and supercomputer simulations. The findings, published in the journal Nature, can help clarify how such galaxy clusters evolve.
Galaxy clusters can contain up to thousands of galaxies bound together by gravity. Abell 3376 is a huge cluster forming as a result of a violent collision between two sub-clusters of galaxies. Very little is known about the magnetic fields that exist within this and similar galaxy clusters.
"It is generally difficult to directly examine the structure of intracluster magnetic fields," says Nagoya University astrophysicist ...
2021-05-24
DALLAS, May 24, 2021 -- Having a stroke or a transient ischemic attack (TIA), sometimes called a "mini-stroke," increases the risk for a stroke in the future. Identifying the cause of the stroke or TIA can lead to specific prevention strategies to reduce the risk of additional strokes, according to an updated guideline from the American Heart Association/American Stroke Association. The guideline is published today in Stroke, a journal of the American Stroke Association, a division of the American Heart Association.
Ischemic strokes account for 87% of strokes in the United States. An ischemic stroke occurs when blood flow in a vessel leading to the brain is blocked, by either clots or plaques. ...
2021-05-24
CRISPR technology allows researchers to edit genomes by altering DNA sequences and by thus modifying gene function. Its many potential applications include correcting genetic defects, treating and preventing the spread of diseases and improving crops.
Genome editing tools, such as the CRISPR-Cas9 technology, can be engineered to make extremely well-defined alterations to the intended target on a chromosome where a particular gene or functional element is located. However, one potential complication is that CRISPR editing may lead to other, unintended, genomic changes. These are known as off-target activity. ...
2021-05-24
While many might consider a walk in the woods to be a quiet, peaceful escape from their noisy urban life, we often don't consider just how incredibly noisy some natural environments can be. Although we use soothing natural sounds in our daily lives - to relax or for meditation - the thunder of a mountain river or the crash of pounding surf have likely been changing how animals communicate and where they live for eons. A new experimental study published in the journal Nature Communications finds that birds and bats often avoid habitat swamped with loud whitewater river noise.
Dr. Dylan Gomes, a recent PhD graduate of Boise State University ...
2021-05-24
For centuries, pelagic Sargassum, floating brown seaweed, have grown in low nutrient waters of the North Atlantic Ocean, supported by natural nutrient sources like excretions from fishes and invertebrates, upwelling and nitrogen fixation. Using a unique historical baseline from the 1980s and comparing it to samples collected since 2010, researchers from Florida Atlantic University's Harbor Branch Oceanographic Institute and collaborators have discovered dramatic changes in the chemistry and composition of Sargassum, transforming this vibrant living organism into a toxic "dead zone."
Their findings, published in Nature Communications, suggest that increased nitrogen availability from natural and anthropogenic sources, including sewage, is supporting blooms of ...
2021-05-24
Despite a daunting more than 130 million cases of SARS-CoV-2 infections to date worldwide, another global pathogen - the Aedes mosquito-borne dengue virus - saw a record number of over 400 million cases in 2019. But vaccine development has been challenging due to the need to protect equally against all four dengue strains. The discovery of new possible biomarkers to predict clinical and immune responses to dengue virus infection, published today in Nature Communication, could be critical to informing future vaccines.
As with SARS-CoV-2 infection, the effects of dengue virus infection can range from asymptomatic ...
2021-05-24
LEBANON, NH - By 2030, pancreatic ductal adenocarcinoma (PDAC), the most lethal form of pancreatic cancer, is projected to become the second leading cause of cancer-related deaths in the United States. Not only are therapeutic options limited, but nearly half of all PDAC patients who have their tumors removed surgically experience disease recurrence within a year, despite receiving additional chemotherapy. For more advanced stages, only about one-third of patients have a limited response to approved chemotherapy.
A team of researchers led by Dartmouth and Dartmouth-Hitchcock's Norris ...
2021-05-24
Within the European Union alone, about three million people are affected by an autism spectrum disorder (ASD). Some are only mildly affected and can live independent lives. Others have severe disabilities. What the different forms have in common is difficulty with social interaction and communication, as well as repetitive-stereotypic behaviors. Mutations in a few hundred genes are associated with ASD. One of them is called Cullin 3, and it is a high-risk gene: A mutation of this gene almost certainly leads to a disorder. But how exactly does this gene affect the brain? To learn more about it, Jasmin Morandell and Lena Schwarz, PhD students at Professor Gaia Novarino's research group, ...
2021-05-24
SILVER SPRING, Md.--People who are successful at weight-loss maintenance spend less time sitting during the week and weekends compared to weight-stable individuals with obesity, according to a paper published online in Obesity, The Obesity Society's flagship journal. This is the first study to examine time spent in various sitting activities among weight-loss maintainers.
Prior findings from 2006 in the National Weight Control Registry indicated that weight-loss maintainers watched significantly less television than controls, but other sitting activities were not examined. In the current study, weight-loss maintainers did not significantly differ from controls in reported weekly sitting time ...
LAST 30 PRESS RELEASES:
[Press-News.org] New quantum material discovered
A research team from TU Wien together with US research institutes came across a surprising form of 'quantum criticality'; this could lead to a design concept for new materials