(Press-News.org) Slow slip earthquakes, a type of slow motion tremor, have been detected at many of the world's earthquake hotspots, including those found around the Pacific Ring of Fire, but it is unclear how they are connected to the damaging quakes that occur there. Scientists at The University of Texas at Austin have now revealed the earthquakes' inner workings using seismic CT scans and supercomputers to examine a region off the coast of New Zealand known to produce them.
The insights will help scientists pinpoint why tectonic energy at subduction zones such as New Zealand's Hikurangi subduction zone, a seismically active region where the Pacific tectonic plate dives -- or subducts -- beneath the country's North Island, is sometimes released gently as slow slip, and other times as devastating, high-magnitude earthquakes.
The research was recently published in the journal Nature Geoscience as part of a special edition focused on subduction zones.
"Subduction zones are the biggest earthquake and tsunami factories on the planet," said co-author Laura Wallace, a research scientist at UT Austin's Institute for Geophysics (UTIG) and GNS Science in New Zealand. "With more research like this, we can really begin to understand the origin of different types of [earthquake] behavior at subduction zones."
The research used novel image processing techniques and computer modelling to test several proposed mechanisms about how slow slip earthquakes unfold, revealing the ones that worked best.
The study's lead author, Adrien Arnulf, a UTIG research scientist, said that this line of research is important because understanding where and when a large subduction zone earthquake could strike can happen only by first solving the mystery of slow slip.
"If you ignore slow slip, you will miscalculate how much energy is stored and released as tectonic plates move around the planet," he said.
Scientists know that slow slip events are an important part of the earthquake cycle because they occur in similar places and can release as much pent-up tectonic energy as a high magnitude earthquake, but without causing sudden seismic shaking. In fact, the events are so slow, unfolding over the course of weeks, that they escaped detection until only about 20 years ago.
New Zealand's Hikurangi subduction zone is an ideal site to study slow slip quakes because they occur at depths shallow enough to be imaged at high resolution, either by listening to the internal rumblings of the Earth, or by sending artificial seismic waves into the subsurface and recording the echo.
Turning seismic data into a detailed image is a laborious task but by using similar techniques to those used in medical imaging, geoscientists are able to pick apart the length, shape, and strength of the seismic echo to figure out what's going on underground.
In the current study, Arnulf was able to extract even more information by programming algorithms on Lonestar5, a supercomputer at the Texas Advanced Computing Center, to look for patterns in the data. The results told Arnulf how weak the fault had become and where pressure was being felt within the Earth's joints.
He worked with UT Jackson School of Geosciences graduate student, James Biemiller, who used Arnulf's parameters in a detailed simulation he had developed for modeling how faults move.
The simulation showed tectonic forces building in the crust then releasing through a series of slow motion tremors, just like slow slip earthquakes detected at Hikurangi over the past two decades.
According to the scientists, the real success of the research was not that the model worked but that it showed them where the gaps are in the physics.
"We don't necessarily have the nail-in-the-coffin of how exactly shallow slow slip occurs," said Biemiller, "but we tested one of the standard nails (rate-state friction) and found it doesn't work as well as you'd expect. That means we can probably assume there are other processes involved in modulating slow slip, like cycles of fluid pressurization and release."
Finding those other processes is exactly what the team hope their method will help facilitate.
The study's seismic data was provided by GNS Science and the New Zealand Ministry of Economic Development. The research was funded by UTIG and an MBIE Endeavour fund for GNS Science. UTIG is a unit of the Jackson School of Geosciences.
INFORMATION:
Patients who suffer from REM sleep behaviour disorder have altered blood flow in the brain, which can lead to a lack of oxygen in the brain tissue. In the long term, this may cause symptoms of Parkinson's disease. This is shown by research from Aarhus University and Aarhus University Hospital.
Do you sleep restlessly and flail your arms and kick out in your sleep? This could be a sign of a disorder associated with diseases of the brain. Researchers from AU and AUH have examined whether the sleep disorder RBD - which is also known as Rapid Eye Movement Sleep Behaviour Disorder - may ...
An investigation carried out by the astrophysicists of the Instituto de Astrofísica de Canarias (IAC) ?ofia Chrobáková, a doctoral student at the IAC and the University of La Laguna (ULL), and Martín López Corredoira, questions one of the most interesting findings about the dynamics of the Milky Way in recent years: the precession, or the wobble in the axis of rotation of the disc warp is incorrect. The results have just been published in The Astrophysical Journal.
The Milky Way is a spiral galaxy, which means that it is composed, among other components, of a disc of stars, gas and dust, in which the spiral arms are contained. At first, it was thought that the disc was ...
The bacterium Staphylococcus epidermidisis primarily a harmless microbe found on the skin and in the noses of humans. Yet some strains of this species can cause infections - in catheters, artificial joints, heart valves, and in the bloodstream - which are difficult to treat. These bacteria are often resistant to a particularly effective antibiotic, methicillin, and are among the most feared germs in hospitals. How these usually harmless skin microbes become deadly pathogens has been unclear up to now.
An international research team has now discovered what distinguishes peaceful S. epidermidis microorganisms from the many dangerous invaders. The scientists have identified a new gene cluster that enables the more aggressive bacteria to produce additional structures in their cell ...
DURHAM, N.C. -- Smartwatches and other wearable devices may be used to sense illness, dehydration and even changes to the red blood cell count, according to biomedical engineers and genomics researchers at Duke University and the Stanford University School of Medicine.
The researchers say that, with the help of machine learning, wearable device data on heart rate, body temperature and daily activities may be used to predict health measurements that are typically observed during a clinical blood test. The study appears in Nature Medicine on May 24, 2021.
During a doctor's office visit, a medical worker usually measures a patient's vital signs, including their height, weight, ...
On 17 May 2021, the UK moved to step three of the Government's Roadmap out of Lockdown - which allowed for the lifting of a ban on foreign travel. Yet, travelling to amber and red list countries still carries strict regulations. UK residents can use proof of vaccination or Covid status (via the NHS app) to comply with travel restrictions in different countries - a scheme known as vaccine passports. However, issues remain to be resolved on how they will be implemented and used, and public opinion appear polarised.
Researchers from the University of Surrey's School of Hospitality and Tourism Management, ...
Road verges cover 1.2% of land in Great Britain - an area the size of Dorset - and could be managed to help wildlife, new research shows.
University of Exeter researchers used Google Earth and Google Street View to estimate that verges account for 2,579 km2 (almost 1,000 square miles) of land.
About 27% of these verges are frequently mown, 41% is wilder grassland, 19% is woodland and the rest is scrub.
There are "significant opportunities" to improve verges by reducing mowing and planting trees, the researchers say.
"Our key message is that there's ...
DURHAM, N.C. -- Biomedical engineers at Duke University have developed an automatic process that uses streamlined artificial intelligence (AI) to identify active neurons in videos faster and more accurately than current techniques.
The technology should allow researchers to watch an animal's brain activity in real time, as they are behaving.
The work appears May 20 in Nature Machine Intelligence.
One of the ways researchers study the activity of neurons in living animals is through a process known as two-photon calcium imaging, which makes active neurons appear as flashes of light. Analyzing these videos, however, typically requires a human circling every burst of intensity they see in a process called segmentation. While this may seem straightforward, ...
Schizophrenia is a heterogeneous psychiatric disorder characterized by positive symptoms such as hallucinations and delusions, negative symptoms such as apathy and lack of emotion, and cognitive impairment. We have reported that VB6 (pyridoxal) levels in peripheral blood of a subpopulation of patients with schizophrenia is significantly lower than that of healthy controls. More than 35% of patients with schizophrenia have low levels of VB6 (clinically defined as male: < 6 ng/ml, female: < 4 ng/ml). VB6 level is inversely proportional to severity score on the positive and negative symptom scale (PANSS), suggesting that VB6 deficiency might contribute to the development ...
A security issue in the certification signatures of PDF documents has been discovered by researchers at Ruhr-Universität Bochum. This special form of signed PDF files can be used, for instance, to conclude contracts. Unlike a normal PDF signature, the certification signature permits certain changes to be made in the document after it has actually been signed. This is necessary to allow the second contractual party to also sign the document. The team from the Horst Görtz Institute for IT Security in Bochum showed that the second contractual ...
Press release - Abstract 481: Effects of testosterone therapy on morphology and grade of NAFLD in obese men with functional hypogonadism and type 2 diabetes
According to a new study, testosterone therapy may reduce non-alcoholic fatty liver disease in obese men with functional hypogonadism and type-2 diabetes.
Testosterone therapy may help obese men with functional hypogonadism and type-2 diabetes reduce the prevalence of non-alcoholic fatty liver disease (NAFLD), according to a study being presented at the 23rd?European Congress of Endocrinology ...