SARS-CoV-2 RNA discovery unlocks new potential treatments
2021-05-25
(Press-News.org) An international and multidisciplinary team led by researchers at the University of Oxford, University of Glasgow, and University of Heidelberg, has uncovered the interactions that SARS-CoV-2 RNA establishes with the host cell, many of which are fundamental for infection. These discoveries pave the way for the development of new therapeutic strategies for COVID-19 with broad-range antiviral potential.
The genetic information of SARS-CoV-2 is encoded in an RNA molecule instead DNA. This RNA must be multiplied, translated, and packaged into new viral particles to produce the viral progeny. Despite the complexity of these processes, SARS-CoV-2 only encodes a handful of proteins able to engage with viral RNA. To circumvent this
limitation SARS-CoV-2 hijacks cellular proteins and repurposes it for its own benefit. However, the identity of these proteins has remained unknown until now.
Researchers from the University of Oxford in collaboration with other labs across UK and Europe have developed a new approach to discover in a comprehensive manner the proteins that 'stick' to SARS-CoV-2 RNA in infected cells. With this method, authors uncovered that SARS-CoV-2 RNA hijacks more than a hundred cellular proteins, which appear to play critical roles in the viral life cycle.
This work, published in Molecular Cell, identifies many potential therapeutic targets with hundreds of available drugs targeting them. In a proof-of-principle experiment, authors selected four drugs targeting four different cellular proteins. These drugs caused from moderate to strong effects in viral replication.
'These exciting results are only the beginning,' said Alfredo Castello, one of the researchers that has led the work. 'With hundreds of compounds that target these critical cellular proteins, it will be possible to identify novel antivirals. Our efforts, together with those of the scientific community, should focus now on testing these drugs in infected cells and animal models to uncover which ones are the best antivirals.'
An unexpected observation of this study is that viruses from different origin such as SARS-CoV-2 and Sindbis, hijack a similar repertoire of cellular proteins. This discovery is very important, as cellular proteins with important and wide-spread roles in virus infection have potential as target for broad-spectrum antiviral treatments.
'In this stage of the pandemic in which vaccines have proved their value,' added Alfredo Castello. 'It becomes fundamental to develop new therapeutic approach to counteract emergent vaccine-resistant variants or novel pathogenic viruses with pandemic potential.'
Professor Shabaz Mohammed adds: 'These new methods to discover the interactors of viral RNA builds on nearly 6 years of joined effort between the Castello and Mohammed labs using Sindbis virus as discovery model. This pre-existent work allowed us to react rapidly at the beginning of the COVID-19 pandemic and study the interactions between SARS-CoV-2 and the host cell in a reduced timeframe. Our methodology will now be ready to respond rapidly to future viral threads.'
INFORMATION:
The paper 'Global analysis of protein-RNA interactions in SARS-CoV-2 infected cells reveals key regulators of infection' is published in the journal Molecular Cell. The work was led by Dr Wael Kamel and Marko Noerenberg, postdoctoral researchers at Glasgow and Oxford, and Berati Cerikan, postdoctoral fellow at the University of Heidelberg.
[Attachments] See images for this press release:
ELSE PRESS RELEASES FROM THIS DATE:
2021-05-25
Swedish and Danish journalists describe their role as monitorial to a greater extent than journalists from other Nordic countries. Journalists from Norway and Iceland state they have the least experience of political influence and thus differ from Finnish journalists. This is shown by a new comparative study published by Nordicom at the University of Gothenburg.
In a new study, researchers examine the similarities and differences in Nordic journalists' perceptions of the role of journalists and different kinds of influence on journalistic work. They also compare the Nordic perceptions with journalists in the rest of Europe. The study is ...
2021-05-25
With a global impetus toward utilizing more renewable energy sources, wind presents a promising, increasingly tapped resource. Despite the many technological advancements made in upgrading wind-powered systems, a systematic and reliable way to assess competing technologies has been a challenge.
In a new case study, researchers at Texas A&M University, in collaboration with international energy industry partners, have used advanced data science methods and ideas from the social sciences to compare the performance of different wind turbine designs.
"Currently, there is no method to validate if a newly created technology will increase wind energy production and efficiency by a certain amount," said Dr. Yu Ding, ...
2021-05-25
Over a year after the novel coronavirus cemented its grip on the world, much of the conversation surrounding the disease remains simple: how many people died and how many survived?
But researchers at Michigan Medicine say a devastating side effect lurks, underreported, between those extremes - the loss of ability caused by the virus.
In a study published in the journal PM&R, investigators found that 45% of patients hospitalized for COVID-19 experienced significant functional decline after being discharged.
"Rehabilitation needs were really, really common for these patients," says lead author Alecia K. Daunter, M.D., a pediatric physiatrist at Michigan Medicine. "They survived, but these people left the hospital in worse physical condition than they started. If they ...
2021-05-25
WASHINGTON, May 25, 2021 -- Cosmic rays are high-energy atomic particles continually bombarding Earth's surface at nearly the speed of light. Our planet's magnetic field shields the surface from most of the radiation generated by these particles. Still, cosmic rays can cause electronic malfunctions and are the leading concern in planning for space missions.
Researchers know cosmic rays originate from the multitude of stars in the Milky Way, including our sun, and other galaxies. The difficulty is tracing the particles to specific sources, because the turbulence of interstellar gas, plasma, and dust causes them to scatter and rescatter in different directions.
In AIP Advances, by AIP Publishing, University of Notre Dame researchers developed a simulation model ...
2021-05-25
Fusarium Head Blight (FHB), also known as scab, is a significant disease of small grain cereals, such as wheat and barley, that impacts farmers around the world. The disease has been reducing acreage and increasing the price of wheat production in the United States since the early 1990s, which in turn increases costs for downstream producers, such as millers and brewers.
The disease is caused by a fungus that produces heat-stable trichothecene mycotoxins, which help the disease spread. To stop the spread, plant breeders are working to develop cultivars with improved resistance to FHB. A team of plant pathologists primarily based at Rutgers University recently generated ...
2021-05-25
What started as the preliminary analysis of routine laboratory data has since evolved into the largest-ever study of viral load levels in patients with SARS-CoV-2. A team of researchers from Charité - Universitätsmedizin Berlin have now analyzed the PCR samples of more than 25,000 persons with COVID-19. Working under the leadership of Prof. Dr. Christian Drosten, the team determined the viral loads of each individual sample and used their results to estimate levels of infectiousness. The research, which has been published in Science*, provides a clear idea of the infectiousness of the disease in different age groups and at different levels of disease severity. It also provides new insights into the ...
2021-05-25
LA JOLLA--(May 25, 2021) One of the many effects of aging is loss of muscle mass, which contributes to disability in older people. To counter this loss, scientists at the Salk Institute are studying ways to accelerate the regeneration of muscle tissue, using a combination of molecular compounds that are commonly used in stem-cell research.
In a study published on May 25, 2021, in Nature Communications, the investigators showed that using these compounds increased the regeneration of muscle cells in mice by activating the precursors of muscle cells, called myogenic progenitors. Although more work is needed before this approach can be applied in humans, the ...
2021-05-25
Childhood abuse and trauma are linked to many health issues in adulthood. New research from the University of Georgia suggests that a history of childhood mistreatment could have negative ramifications for the children of people who experienced abuse or neglect in childhood.
Teaching your children how to manage their emotions is an integral part of parenting. For people who experienced childhood abuse, that can become a difficult task. People who were frequently mistreated as children may find it hard to identify their emotions and implement strategies to regulate them. This difficulty, in turn, can harm their kids' emotional development.
The study, published ...
2021-05-25
Recently, the eROSITA (extended Roentgen Survey with an Imaging Telescope Array) x-ray telescope, an instrument developed by a team of scientists at Max-Planck-Institut für Extraterrestrische Physik (MPE), has gained attention among astronomers. The instrument performs an all-sky survey in the x-ray energy band of 0.2-8 kilo electron volts aboard the Spectrum-Roentgen-Gamma (SRG) satellite that was launched in 2019 from the Baikonur cosmodrome in Kazakhstan.
"The eROSITA has been designed to study the large-scale structure of the universe and test cosmological models, including dark energy, by detecting galaxy clusters with redshifts greater than 1, corresponding to a cosmological expansion ...
2021-05-25
Plants contain several types of specialized light-sensitive proteins that measure light by changing shape upon light absorption. Chief among these are the phytochromes.
Phytochromes help plants detect light direction, intensity and duration; the time of day; whether it is the beginning, middle or end of a season; and even the color of light, which is important for avoiding shade from other plants. Remarkably, phytochromes also help plants detect temperature.
New research from Washington University in St. Louis helps explain how the handful of phytochromes found in every plant respond differently to light intensity and temperature, thus ...
LAST 30 PRESS RELEASES:
[Press-News.org] SARS-CoV-2 RNA discovery unlocks new potential treatments