Reaping the benefits of noise
AMOLF scientists unravel noise-assisted signal amplification in systems with memory
2021-05-27
(Press-News.org) Signals can be amplified by an optimum amount of noise, but this so-called stochastic resonance is a rather fragile phenomenon. Researchers at AMOLF were the first to investigate the role of memory for this phenomenon in an oil-filled optical microcavity. The effects of slow non-linearity (i.e. memory) on stochastic resonance were never considered before, but these experiments suggest that stochastic resonance becomes robust to variations in the signal frequency when systems have memory. This has implications in many fields of physics and energy technology. In particular, the scientists numerically show that introducing slow non-linearity in a mechanical oscillator harvesting energy from noise can increase its efficiency by tenfold. They publish their findings in Physical Review Letters on May 27th.
It is not easy to concentrate on a difficult task when two people are having a loud discussion right next to you. However, complete silence is often not the best alternative. Whether it is some soft music, remote traffic noise or the hum of people chatting in the distance, for many people, an optimum amount of noise enables them to concentrate better. "This is the human equivalent of stochastic resonance", says AMOLF group leader Said Rodriguez. "In our scientific labs stochastic resonance happens in non-linear systems that are bistable. This means that, for a given input, the output can switch between two possible values. When the input is a periodic signal, the response of a non-linear system can be amplified by an optimum amount of noise using the stochastic resonance condition."
Ice ages
In the 1980's stochastic resonance was proposed as an explanation for the recurrence of ice ages. Since then, it has been observed in many natural and technological systems, but this wide-spread observation poses a puzzle to scientists. Rodriguez: "Theory suggests that stochastic resonance can only occur at a very specific signal frequency. However, many noise-embracing systems live in environments where signal frequencies fluctuate. For example, it has been shown that certain fish prey on plankton by detecting a signal they emit, and that an optimum amount of noise enhances the fish's ability to detect that signal through the phenomenon of stochastic resonance. But how can this effect survive fluctuations in the signal frequency occurring in such complex environments?"
Memory effects
Rodriguez and his PhD student Kevin Peters who is the first author of the paper, were the first to demonstrate that memory effects must be taken into account to solve this puzzle. "The theory of stochastic resonance assumes that non-linear systems respond instantaneously to an input signal. However, in reality most systems respond to their environment with a certain delay and their response depends on all that happened before", he says. Such memory effects are difficult to describe theoretically and to control experimentally, but the Interacting Photons group at AMOLF has now managed both. Rodriguez: "We have added a controlled amount of noise to a beam of laser light and have shined it on a tiny cavity filled with oil, which is a non-linear system. The light causes the temperature of the oil to rise, and its optical properties to change, but not immediately. It takes about ten microseconds, thus the system is non-instantaneous as well. In our experiments, we have shown for the first time that stochastic resonance can occur over a broad range of signal frequencies when memory effects are present."
Energy harvesting
Having thus shown that the widespread occurrence of stochastic resonance may be due to yet unnoticed memory dynamics, the researchers hope that their results will inspire colleagues in several other fields of science to search for memory effects in in their own systems. To extend the impact of their findings, Rodriguez and his team have theoretically investigated the effects of non-instantaneous response on mechanical systems for energy harvesting. "Small piezo-electric devices that harvest energy from vibrations are useful when battery replacement is difficult, for example in pacemakers or other biomedical devices", he explains. "We have found a tenfold increase in the amount of energy that could be harvested from environmental vibrations, if memory effects would have been incorporated."
The obvious next step for the group is to expand their system with several connected oil-filled cavities and investigate collective behavior emerging from noise. Rodriguez does not fear stepping outside his scientific comfort zone. He says: "It would be great if we could team up with researchers that have expertise in mechanical oscillators. If we can implement our memory effects in those systems, the impact on energy technology will be enormous."
INFORMATION:
Reference
K. J. H. Peters, Z. Geng, K. Malmir, J. M. Smith and S. R. K. Rodriguez, Extremely Broadband Stochastic Resonance of Light and Enhanced Energy Harvesting 3 Enabled by Memory Effects in the Nonlinear Response, Physical Review Letters, 126, 213901 (2021), doi:10.1103/PhysRevLett.126.213901
[Attachments] See images for this press release:
ELSE PRESS RELEASES FROM THIS DATE:
2021-05-27
Ant workers that are infected with a tapeworm live much longer than their uninfected nest-mates. Parasitic infections are usually harmful to their hosts, but there are some exceptions. According to the results of a multi-year scientific study, ants of the species Temnothorax nylanderi show exceptionally high survival rates when infected with a tapeworm. "The lifespan of the infected ants is significantly prolonged. According to our observations, such workers have a survival rate similar to that of queens," said Professor Susanne Foitzik of Johannes Gutenberg University ...
2021-05-27
A new discovery by University of Guelph researchers may ultimately help in devising new therapies and improving quality of life for people with Parkinson's disease.
By showing how entangled proteins in brain cells enable the neurodegenerative disease to spread, the researchers hope their findings will lead to drugs that halt its progression, said PhD candidate Morgan Stykel, first author of a paper published this month in Cell Reports.
Parkinson's disease is the world's fastest-growing neurodegenerative disease and Canada has some of the world's highest rates, according to Parkinson Canada. Its exact cause is unknown.
Current therapies only treat symptoms rather than halting the disease, said Dr. Scott Ryan, a professor ...
2021-05-27
In the largest genetic analysis of depression to date, Veterans Affairs researchers identified many new gene variants that increase the risk for depression. The groundbreaking study helps researchers better understand the biological basis of depression and could lead to better drug treatments.
The study involved genetic data on more than 300,000 participants of VA's Million Veteran Program (MVP), along with more than a million subjects from other biobanks, including 23andMe. With such a large participant pool, the researchers were able to spot trends in genetic risk of depression not previously known.
Co-primary investigator Dr. Joel Gelernter, a researcher with the VA Connecticut Healthcare System and Yale University School of Medicine, explained ...
2021-05-27
Researchers at the University of Illinois Chicago are a step closer to discovering why it is so difficult for people to withdraw from some antidepressant medications.
The paper "Antidepressants produce persistent Gαs associated signaling changes in lipid rafts following drug withdrawal," published in the journal Molecular Pharmacology, addresses the molecular and cellular mechanisms that cause antidepressant withdrawal syndrome.
The study's authors, Mark Rasenick, distinguished professor of physiology and biophysics and psychiatry at UIC and research career scientist at the Jesse Brown VA Medical Center, and Nicholas ...
2021-05-27
Higher percentage of patients treated with nivolumab and ipilimumab in clinical trial reach the six-and-a-half-year survival mark than those treated with either drug alone.
BOSTON - In the longest follow-up results from a clinical trial of combination immunotherapy for metastatic melanoma, investigators report that nearly half the patients who received the drugs nivolumab and ipilimumab were alive a median of six and a half years after treatment. The results, stemming from the CheckMate 067 clinical trial, represent a new landmark in survival rates for patients with melanoma treated with immune checkpoint inhibitor drugs.
F. ...
2021-05-27
URBANA, Ill. - As the owner of a human body, you're carrying trillions of microbes with you everywhere you go. These microscopic organisms aren't just hitching a ride; many of them perform essential chemical reactions that regulate everything from our digestion to our immune system to our moods.
One important set of reactions relates to fat absorption via bile acids. Our livers make these acids to help digest fats and fat-soluble vitamins as they travel through the small intestine. Near the end of the small intestine, microbes convert the acids into new forms, which can either be beneficial or ...
2021-05-27
Over the past 20 years, first-principles simulations have become powerful, widely used tools in many, diverse fields of science and engineering. From nanotechnology to planetary science, from metallurgy to quantum materials, they have accelerated the identification, characterization, and optimization of materials enormously. They have led to astonishing predictions--from ultrafast thermal transport to electron-phonon mediated superconductivity in hydrides to the emergence of flat bands in twisted-bilayer graphene-- that have gone on to inspire remarkable experiments.
The current push to complement ...
2021-05-27
WASHINGTON -- Researchers have developed a new technique that allows microscopic fluorescence imaging at four times the depth limit imposed by light diffusion. Fluorescence microscopy is often used to image molecular and cellular details of the brain in animal models of various diseases but, until now, has been limited to small volumes and highly invasive procedures due to intense light scattering by the skin and skull.
"Visualization of biological dynamics in an unperturbed environment, deep in a living organism, is essential for understanding the complex biology of living organisms ...
2021-05-27
Five years on from the first discovery of gravitational waves, an international team of scientists, including from the ARC Centre of Excellence for Gravitational Wave Discovery (OzGrav), are continuing the hunt for new discoveries and insights into the Universe. Using the super-sensitive, kilometre-sized LIGO detectors in the United States, and the Virgo detector in Europe, the team have witnessed the explosive collisions of black holes and neutron stars. Recent studies, however, have been looking for something quite different: the elusive signal from a solitary, rapidly-spinning neutron star.
Take a star similar in size to the Sun, squash it down to a ball about ...
2021-05-27
The hunt for the never before heard "hum" of gravitational waves caused by mysterious neutron stars has just got a lot easier, thanks to an international team of researchers.
Gravitational waves have only been detected from black holes and neutron stars colliding, major cosmic events that cause huge bursts that ripple through space and time.
The research team, involving scientists from the LIGO Scientific Collaboration (LSC), Virgo Collaboration and the Centre for Gravitational Astrophysics (CGA) at The Australian National University (ANU), are now turning their eagle eye to spinning neutron stars to detect the waves.
Unlike the massive bursts caused by black holes or neutron stars colliding, the researchers ...
LAST 30 PRESS RELEASES:
[Press-News.org] Reaping the benefits of noise
AMOLF scientists unravel noise-assisted signal amplification in systems with memory