PRESS-NEWS.org - Press Release Distribution
PRESS RELEASES DISTRIBUTION

Trust the machine -- it knows what it is doing

New theoretical insights provide a physically sound understanding of machine learning-based simplified climate models

Trust the machine -- it knows what it is doing
2021-06-01
(Press-News.org) Machine learning, when used in climate science builds an actual understanding of the climate system, according to a study published in the journal Chaos by Manuel Santos Gutiérrez and Valerio Lucarini, University of Reading, UK, Mickäel Chekroun, the Weizmann Institute, Israel and Michael Ghil, Ecole Normale Supérieure, Paris, France. This means we can trust machine learning and further its applications in climate science, say the authors. The study is part of the European Horizon 2020 TiPES project on tipping points in the Earth system. TiPES is administered from the University of Copenhagen, Denmark.

Man or machine

Large, complex climate models are often impractical to work with as they need to run for months on supercomputers. As an alternative, climate scientists often study simplified models.

Generally, two different approaches are used to simplify climate models: A top-down approach where climate experts estimate what impact left out functions will have on the parts kept in the reduced model. And a bottom-up approach, where climate data is fed a machine learning programme, which then simulates the climate system.

The two methods turn out comparable results. It is a challenging problem, however, to physically understand data-driven (bottom-up) approaches to fully trust them. Do machine learning programmes "understand" that they are dealing with a complex dynamical system, or are they simply good at statistically guessing the right answers?

Intelligent solution

Now, a group of scientists prove analytically and using computer simulations, that a machine learning programme called Empirical Model Reduction (EMR) in fact knows what it is doing. The study shows that this computer programme reaches comparable results to the top-down reductions of larger models because machine learning constructs its own version of a climate model in its software.

"I think what we do in this investigation is give some sort of physical evidence of why this particular data-driven protocol works. And that to me is quite meaningful, because the method has been in the atmospheric sciences for quite a long time. Yet there was still quite a lot of gaps in the understanding of the methodologies," says PhD student Manuel Santos Gutiérrez.

Encouraging and useful

The study indicates that the machine learning method is dynamically and physically sound and produces robust simulations. According to the authors, this should motivate the further use of data-driven methods in climate science as well as other sciences.

"It is a very encouraging step. Because in some sense, it means the data-driven method is intelligent. It is not an emulator of data. It is a model that captures the dynamical processes. It is able to reconstruct what lies behind the data. And that indicates these theoretical derivations give you an object which is algorithmically useful," says Valerio Lucarini, professor of statistical mechanics at the University of Reading.

The result is important in a range of fields: applied mathematics, statistical physics, data science, climate science, and complex system science. And it will have implications in a range of industrial contexts, where complex, dynamical systems are studied but only partial information is accessible - like engineering of aeroplanes, ships, wind turbines, or in traffic modelling, energy grids, distribution networks.

INFORMATION:

Note to editor:

More on TiPES: http://www.tipes.dk

The TiPES project has received funding from the European Horizon 2020 research and innovation program, grant agreement number 820970.

Reference:

M. Santos Gutiérrez, V. Lucarini, M. D. Chekroun, and M. Ghil , "Reduced-order models for coupled dynamical systems: Data-driven methods and the Koopman operator", Chaos: An Interdisciplinary Journal of Nonlinear Science 31, 053116 (2021) https://doi.org/10.1063/5.0039496


[Attachments] See images for this press release:
Trust the machine -- it knows what it is doing

ELSE PRESS RELEASES FROM THIS DATE:

UCalgary study shows BPA exposure below regulatory levels can impact brain development

UCalgary study shows BPA exposure below regulatory levels can impact brain development
2021-06-01
Humans are exposed to a bath of chemicals every day. They are in the beds where we sleep, the cars that we drive and the kitchens we use to feed our families. With thousands of chemicals floating around in our environment, exposure to any number is practically unavoidable. Through the work of researchers like Dr. Deborah Kurrasch, PhD, the implications of many of these chemicals are being thoroughly explored. "Manufacturers follow standards set by regulatory bodies, it's not up to the manufacturers to prove the chemicals in consumer products are safe," says Kurrasch, a researcher in the University of Calgary's Hotchkiss Brain ...

Right-wing rhetoric and the trivialization of pandemic casualties

2021-06-01
Right-wing voices set out powerful but misleading arguments to justify inaction by the Trump administration during the COVID-19 pandemic, according to a new study of the rhetoric used by high-level government officials and influential commentators in the US during the first half of 2020. In a study published in the DeGruyter journal Open Anthropological Research, Professor Martha Lincoln of San Francisco State University examined how public officials openly pushed for people to accept widespread illness and death from the virus by adopting a tone that suggested premature death was normal and the scale of death acceptable in the grander ...

RUDN mathematician found a way to boost computations for IoT devices by three times

RUDN mathematician found a way to boost computations for IoT devices by three times
2021-06-01
RUDN mathematician and his colleagues from China, Egypt, Saudi Arabia, United Kingdom, and Qatar have developed an algorithm allowing the distribution of computing tasks between the IoT devices and the cloud in an optimal way. As a result, the power and time costs are reduced by about three times. The study was published in the Big Data. With the development of technologies and devices, Internet of Things (IoT) applications require more and more computing power. The amount of data that the IoT devices need to process can be so large that it is reasonable to migrate computing to the cloud. Cloud computing provides flexible data processing and storage capabilities. But Computation offloading, meaning transferring of the resource-intensive processes ...

A new soft electronic material for human-machine-interfacing

A new soft electronic material for human-machine-interfacing
2021-06-01
A DTU research team consisting of Malgorzata Gosia Pierchala, Firoz Babu Kadumundi, and Mehdi Mehrali from #TeamBioEngine headed by Alireza Dolatshahi-Pirouz, have developed a new material - CareGum - that among other things has potential for monitoring motor impairment associated with neurological disorders such as Parkinson's. A green material with many properties The CareGum property portfolio is incredibly broad with feats such as skin-like softness, it is stretchable up to 30,000 % and has self-healing capacities reminiscent of that of natural tissues. It is printable, moldable, and electrically conductive. Notably, the electrical conductivity enables the material to respond to external stimuli ...

Oncotarget: STAT3 induces the expression of GLI1 in chronic lymphocytic leukemia cells

Oncotarget: STAT3 induces the expression of GLI1 in chronic lymphocytic leukemia cells
2021-06-01
Oncotarget published "STAT3 induces the expression of GLI1 in chronic lymphocytic leukemia cells" which reported that what induces GLI1 expression in GLI1-unmutated CLL cells is unknown. Because signal transducer and activator of transcription 3 is constitutively activated in CLL cells and sequence analysis detected putative STAT3-binding sites in the GLI1 gene promoter, the authors hypothesized that STAT3 induces the expression of GLI1. Western immunoblotting detected GLI1 in CLL cells from 7 of 7 patients, flow cytometry analysis confirmed that CD19 /CD5 CLL cells co-express GLI1 and confocal microscopy showed co-localization of GLI1 and phosphorylated STAT3. Chromatin immunoprecipitation showed ...

A fungus is major cause of death among people with HIV in the Brazilian Amazon

2021-06-01
A series of autopsies performed in an infectious disease hospital in the Brazilian Amazon reveals that infections by the Histoplasma fungus are a major cause of death in people with HIV. The study, led by Barcelona Institute for Global Health (ISGlobal), an institution supported by "la Caixa" Foundation, in collaboration with a team in Manaus, highlights the need of implementing sensitive methods to detect these infections in Histoplasma-endemic regions. Histoplasmosis is a lung infection caused by inhalation of spores from a fungus (Histoplasma), and is frequent in some areas of the US, Africa, and Latin America. In the majority of individuals with a functional immune system, the infection causes mild symptoms. However, in people who are immuno-compromised, such ...

Hi-CO unravels the complex packing of nucleosomes

Hi-CO unravels the complex packing of nucleosomes
2021-06-01
Scientists at Kyoto University's Institute for Integrated Cell-Material Sciences (iCeMS) in Japan have developed a technology that produces high-resolution simulations of one of the basic units of our genomes, called the nucleosome. Their findings were published in the journal Nature Protocols and should help improve understanding of how changes in nucleosome folding influence the inner workings of genes. Nucleosomes are the basic structural units of DNA packaging inside the nucleus. They are formed of DNA wrapped around a small number of histone proteins. Nucleosomes move around inside the nucleus, folding and unfolding, changing their orientations, and moving closer together or further apart. These movements affect the accessibility of various molecules to DNA, determining ...

Childhood cancer discovery may stop tumour spread before it starts

2021-06-01
A new discovery in Ewing sarcoma, an aggressive and often fatal childhood cancer, has uncovered the potential to prevent cancer cells from spreading beyond their primary tumour site. The breakthrough provides new insight into what triggers the process that allows cancer cells to survive while traveling through the body in the bloodstream. Researchers with the University of British Columbia and BC Cancer have learned that Ewing sarcoma cells--and likely other types of cancer cells--are able to develop a shield that protects them from the harsh environment of the bloodstream and other locations as they search for a new place to settle, or metastasize. The study has just been published in Cancer Discovery. "You ...

Browning could make lakes less productive, affecting food webs and fish

Browning could make lakes less productive, affecting food webs and fish
2021-06-01
TROY, N.Y. -- As more dissolved organic matter enters lakes across the northeast United States, darkening the lakes in a phenomena called "browning," new research shows that these waters may be growing less productive and able to sustain less life. In a study published today in Limnology and Oceanography Letters, scientists found that, rather than enriching lakes with nutrients as had previously been assumed, water more heavily laden with dissolved organic matter blocks sunlight and limits plant growth. "A key question regarding lake browning is what impact it will have on aquatic food webs, including algal growth and fisheries," said Kevin Rose, co-author ...

Right off the bat: Navigation in extra-large spaces

Right off the bat: Navigation in extra-large spaces
2021-06-01
The brain is often likened to a computer: its hardware - neurons organized in complex circuits, its software - a plethora of codes that govern the neurons' behavior. But sometimes the brain performs exceptionally well even when its hardware seems inadequate for the task. For example, it's been puzzling how we and other mammals manage to navigate large-scale environments even though the brain's spatial perception circuits are seemingly suited to representing much smaller areas. A team of researchers from the Weizmann Institute of Science, led by Prof. Nachum Ulanovsky of the Neurobiology Department, tackled this riddle by thinking outside the experimental box. By combining an unusual research model - fruit bats - with an unusual setting - a 200 meters-long bat-tunnel - they were ...

LAST 30 PRESS RELEASES:

Using lightning to make ammonia out of thin air

Machine learning potential-driven insights into pH-dependent CO₂ reduction

Physician associates provide safe care for diagnosed patients when directly supervised by a doctor

How game-play with robots can bring out their human side

Asthma: patient expectations influence the course of the disease

UNM physician tests drug that causes nerve tissue to emit light, enabling faster, safer surgery

New study identifies EMP1 as a key driver of pancreatic cancer progression and poor prognosis

XPR1 identified as a key regulator of ovarian cancer growth through autophagy and immune evasion

Flexible, eco-friendly electronic plastic for wearable tech, sensors

Can the Large Hadron Collider snap string theory?

Stuckeman professor’s new book explores ‘socially sustainable’ architecture

Synthetic DNA nanoparticles for gene therapy

New model to find treatments for an aggressive blood cancer

Special issue of Journal of Intensive Medicine analyzes non-invasive respiratory support

T cells take aim at Chikungunya virus

Gantangqing site in southwest China yields 300,000-year-old wooden tools

Forests can’t keep up: Adaptation will lag behind climate change

Sturgeon reintroduction initiative yields promising first-year survival rate

Study: Babies’ poor vision may help organize visual brain pathways

Research reveals Arctic region was permafrost-free when global temperatures were 4.5˚ C higher than today

Novel insights into chromophobe renal cell carcinoma biology and potential therapeutic strategies

A breakthrough in motor safety: AI-powered warning system enhances capability to uncover hidden winding faults

Research teases apart competing transcription organization models

Connect or reject: Extensive rewiring builds binocular vision in the brain

Benefits and risks: informal use of antibiotics to prevent sexually transmitted infections on the rise in key populations in the Netherlands

New molecular tool sheds light on how cancer cells repair telomeres

First large-scale stem cell bank enables worldwide studies on genetic risk for Alzheimer’s disease

Hearing devices significantly improve social lives of those with hearing loss

CNIC scientists reveal how the cellular energy system evolved—and how this knowledge could improve the diagnosis of rare genetic diseases

AI sharpens pathologists' interpretation of tissue samples

[Press-News.org] Trust the machine -- it knows what it is doing
New theoretical insights provide a physically sound understanding of machine learning-based simplified climate models