(Press-News.org) Researchers world-wide are focused on clearing the toxic mutant Huntingtin protein that leads to neuronal cell death and systemic dysfunction in Huntington's disease (HD), a devastating, incurable, progressive neurodegenerative genetic disorder. Scientists in the Buck Institute's Ellerby lab have found that the targeting the protein called FK506-binding protein 51 or FKBP51 promotes the clearing of those toxic proteins via autophagy, a natural process whereby cells recycle damaged proteins and mitochondria and use them for nutrition.
Publishing in Autophagy , researchers showed that FKBP51 promotes autophagy through a new mechanism that could avoid worrisome side effects associated with rapamycin, an immune-suppressing drug which also extends lifespan in mice. They show both rapamycin and the small pharmacological inhibitor of FKBP51, SAFit2, protect HD neurons but that the mechanisms of the two drugs are distinct.
The possibility of avoiding the negative side effects of rapamycin
Researchers focused on a family of binding proteins called FKBP's and specifically on FKBP51, which was most changed in mouse and human stem cell models of HD. During the course of the study scientist found that FKBP51 acts on a pathway independent of mTOR (mammalian Target of Rapamycin), which is associated with rapamycin. Scientists also identified a small molecule, SAFit2, which crossed the blood-brain barrier and promoted autophagy and reduced the toxic disease-causing protein through that mTOR-independent pathway.
"Rapamycin can have both positive and negative effects and this new molecule could give us a way to go after the toxic proteins without those complications," said Buck Professor Lisa Ellerby, PhD, director of the study, who added that the findings are also significant for the aging field. "We know that FKBP's get dysregulated during aging, a phenomena which likely contributes to the accumulation of toxic proteins associated with other age-related diseases. SAFit2, which is neuroprotective, could give us another option to promote autophagy and clear out disease-causing proteins or proteins accumulated during disease and aging which are correlated with other conditions." FKPB51 has been implicated in Parkinson's and Alzheimer's diseases as well as post-traumatic stress disorder and schizophrenia.
The first author of the work, Barbara Bailus, PhD, is a former postdoc in the Ellerby lab. "The fact that SAFit2 crosses the blood brain barrier is significant," said Bailus, who is now an Assistant Professor of Genetics at the Keck Graduate Institute in Claremont, CA. "In our mouse models of HD, the small molecule interacted with FKPBP51 and cleared toxic proteins in both the cortex and the striatum which is part of the neural circuit necessary for voluntary movement."
The Ellerby lab will do pre-clinical work with SAFit2, which was developed by a collaborator, Dr. Felix Hausch, PhD, at the Technical University in Darmstadt, Germany.
Current status of clinical trials for HD
The recent failure of an experimental drug tested in Europe and Canada against HD highlights the desperation of patients who are forced to deal with a malady that usually sees it victims dying about 20 years following the onset of observable symptoms. The drug was developed by Ionis and Roche, and is an antisense oligonucleotide (ASO). It was designed to silence the gene responsible for HD, and had to be injected into the fluid-filled space between the thin layers of tissue that cover the brain and spinal cord. While the details of the failed trial are not published yet, Ellerby says the drug appeared not to diffuse into the entire brain, the ASOs may have unanticipated toxic effects and the ASOs do not reach all affected peripheral tissues. HD affects coordination and leads to cognitive decline and psychiatric problems.
"While we had hoped that this drug would ultimately work for patients in desperate need of treatment, those of us in the field have been aware that we need less invasive treatments for HD that are more likely to be easily tolerated," said Ellerby. "I don't know if we'll be able to do that with this small molecule, but at this point it does show potential and we look forward to evaluating its effects in pre-clinical experiments."
INFORMATION:
Citation: Modulating FKBP5/FKBP51 and Autophagy Lowers HTT (huntingtin) Levels
DOI: 10.1080/15548627.2021.1904489
Other Buck Institute collaborators include: Stephen Scheeler, Jesse Simons, Maria A. Sanchez, Swati Naphade, Alejandro Lopez-Ramirez, Ningzhe Zhang, Kuruwitage Lakshika Madushani, Stanislav Moroz, Ashley Loureiro, Kathrine H. Schreiber, and Brian Kennedy; Jordi Creus-Muncunill and Michelle E. Ehrlich, Department of Neurology, Icahn School of Medicine at Mount Sinai, NY, NY; Feliz Hausch, Institute for Organic Chemistry and Biochemistry, Technische Universitat Darmstadt, Darmstadt, Germany.
Funding for this research was provided by the National Institutes of Health (T32 AG000266, RO1-NS-100529; ERA-1B7 TACRODRUGS (031B0269B); Pioneer Grant Fund (ENTEGA/Technische Universitat Darmstadt); Buck Institute Double X Fellowship, The Taube Family Program in Regenerative Medicine Genome Editing for Huntington's Disease.
About the Buck Institute for Research on Aging
At the Buck, we aim to end the threat of age-related diseases for this and future generations. We bring together the most capable and passionate scientists from a broad range of disciplines to study mechanisms of aging and to identify therapeutics that slow down aging. Our goal is to increase human health span, or the healthy years of life. Located just north of San Francisco, we are globally recognized as the pioneer and leader in efforts to target aging, the number one risk factor for serious diseases including Alzheimer's, Parkinson's, cancer, macular degeneration, heart disease, and diabetes. The Buck wants to help people live better longer. Our success will ultimately change healthcare. Learn more at: https://buckinstitute.org
Despite a name straight from a Tarantino movie, natural killer (NK) cells are your allies when it comes to fighting infections and cancer. If T cells are like a team of specialist doctors in an emergency room, NK cells are the paramedics: They arrive first on the scene and perform damage control until reinforcements arrive.
Part of our innate immune system, which dispatches these first responders, NK cells are primed from birth to recognize and respond to danger. Learning what fuels NK cells is an active area of research in immunology, with important clinical implications.
"There's a lot of interest right now ...
Army scientists working as part of an international consortium have developed and tested an antibody-based therapy to treat Crimean-Congo hemorrhagic fever virus (CCHFV), which is carried by ticks and kills up to 60 percent of those infected. Their results are published online today in the journal Cell.
Using blood samples donated by disease survivors, the study's authors characterized the human immune response to natural CCHFV infection. They were able to identify several potent neutralizing antibodies that target the viral glycoprotein--a component of the virus that plays a key role ...
AMES, Iowa - An unexpected discovery by an Iowa State University researcher suggests that the first humans may have arrived in North America more than 30,000 years ago - nearly 20,000 years earlier than originally thought.
Andrew Somerville, an assistant professor of anthropology in world languages and cultures, says he and his colleagues made the discovery while studying the origins of agriculture in the Tehuacan Valley in Mexico. As part of that work, they wanted to establish a date for the earliest human occupation of the Coxcatlan Cave in the valley, so they obtained radiocarbon dates for several rabbit and deer bones that were collected from the cave in the 1960s as part of the Tehuacan Archaeological-Botanical Project. The dates for the bones suddenly ...
Key takeaways
The surgical simulator can realistically simulate multiple trauma scenarios at once, compared with traditional simulators that can only simulate one or a limited number of conditions.
Trauma team members who tested the simulator preferred it for its realism, physiologic responses, and feedback.
The benefits of this innovative simulator may be able to extend to other surgical procedures and settings.
CHICAGO (June 1, 2021): Simulators have long been used for training surgeons and surgical teams, but traditional simulator platforms typically have a built-in limitation: they often simulate one or a limited ...
University of South Florida researchers recently developed a novel approach to mitigating electromigration in nanoscale electronic interconnects that are ubiquitous in state-of-the-art integrated circuits. This was achieved by coating copper metal interconnects with hexagonal boron nitride (hBN), an atomically-thin insulating two-dimensional (2D) material that shares a similar structure as the "wonder material" graphene.
Electromigration is the phenomenon in which an electrical current passing through a conductor causes the atomic-scale erosion of the material, eventually resulting in device failure. Conventional semiconductor technology addresses this challenge by using a barrier or liner material, but this takes up precious space on the wafer that could otherwise be used to pack in ...
UNIVERSITY PARK, Pa. -- In 1916 and 1917, a musician and book dealer named Giovanni Concina sold three ornately decorated seventeenth-century songbooks to a library in Venice, Italy. Now, more than 100 years later, a musicologist at Penn State has discovered that the manuscripts are fakes, meticulously crafted to appear old but actually fabricated just prior to their sale to the library. The manuscripts are rare among music forgeries in that the songs are authentic, but the books are counterfeit.
Uncovering deception was not what Marica Tacconi, professor of musicology and associate ...
A new study carried out in pig cells suggests previous infection with swine influenza virus (SIV) can protect against the development of porcine respiratory coronavirus (PRCoV) if there is a zero- or three-day interval between infections.
The findings, published in the peer-reviewed journal Virulence, may also be relevant to influenza and coronavirus infection in humans.
Ju-Yi Peng of the University of Veterinary Medicine Hannover and colleagues used air liquid interface cultures of cells taken from pigs' windpipes to investigate the interactions between the two viruses.
They found that prior infection by swine influenza virus completely inhibited coronavirus infection when the cells were infected ...
Berkeley -- Global land-use changes -- including forest fragmentation, agricultural expansion and concentrated livestock production -- are creating "hot spots" favorable for bats that carry coronaviruses and where conditions are ripe for the diseases to jump from bats to humans, finds an analysis published this week by researchers at the University of California, Berkeley, the Politecnico di Milano (Polytechnic University of Milan) and Massey University of New Zealand.
While the exact origins of the SARS-CoV-2 virus remain unclear, scientists believe that the disease likely emerged when a virus that infects horseshoe bats was able to jump to humans, either ...
Non-alcoholic fatty liver disease (NAFLD) is the most common cause of chronic liver disease worldwide. NAFLD patients are at higher risk of developing Non-alcoholic steatohepatitis (NASH), which causes severe and chronic liver inflammation, fibrosis and liver damage. A patient with NASH is believed to be at high risk for developing a form of liver cancer called hepatocellular carcinoma (HCC).
Apart from lifestyle interventions, there are currently no approved treatments for NASH. A liver transplant is sometimes the only remedy.
While risk factors for NASH (obesity, type-2 diabetes and gene mutations like PNPLA3) and HCC ...
CHAPEL HILL, North Carolina--Researchers have discovered a gene, OTUD7A, that impacts the development of Ewing sarcoma, a bone cancer that occurs mainly in children. They have also identified a compound that shows potential to block OTUD7A protein activity. The finding, by scientists at the University of North Carolina and the Lineberger Comprehensive Cancer Center, appeared online June 1, 2021, in Advanced Science.
About 250 children and young adults are diagnosed with Ewing sarcoma each year in the U.S. About half of those diagnosed will ultimately succumb to the disease, pointing to the need for better therapies.
"Our primary research focus targeted the EWS-FLI1 fusion protein found in about 85 percent of Ewing sarcoma patients," said UNC Lineberger's ...