PRESS-NEWS.org - Press Release Distribution
PRESS RELEASES DISTRIBUTION

Solar energy collectors grown from seeds

Engineers create seeds for growing near-perfect 2D perovskite crystals

Solar energy collectors grown from seeds
2021-06-21
(Press-News.org) HOUSTON - (June 21, 2021) - Rice University engineers have created microscopic seeds for growing remarkably uniform 2D perovskite crystals that are both stable and highly efficient at harvesting electricity from sunlight.

Halide perovskites are organic materials made from abundant, inexpensive ingredients, and Rice's seeded growth method addresses both performance and production issues that have held back halide perovskite photovoltaic technology.

In a study published online in Advanced Materials, chemical engineers from Rice's Brown School of Engineering describe how to make the seeds and use them to grow homogenous thin films, highly sought materials comprised of uniformly thick layers. In laboratory tests, photovoltaic devices made from the films proved both efficient and reliable, a previously problematic combination for devices made from either 3D or 2D perovskites.

"We've come up with a method where you can really tailor the properties of the macroscopic films by first tailoring what you put into solution," said study co-author Aditya Mohite, an associate professor of chemical and biomolecular engineering and of materials science and nanoengineering at Rice. "You can arrive at something that is very homogeneous in its size and properties, and that leads to higher efficiency. We got almost state-of-the-art device efficiency for the 2D case of 17%, and that was without optimization. We think we can improve on that in several ways."

Mohite said achieving homogenous films of 2D perovskites has been a huge challenge in the halide perovskite photovoltaic research community, which has grown tremendously over the past decade.

"Homogeneous films are expected to lead to optoelectronic devices with both high efficiency and technologically relevant stability," he said.

Rice's seed-grown, high-efficiency photovoltaic films proved quite stable, preserving more than 97% of their peak efficiency after 800 hours under illumination without any thermal management. In previous research, 3D halide perovskite photovoltaic devices have been highly efficient but prone to rapid degradation, and 2D devices have lacked efficiency but were highly stable.

The Rice study also details the seeded growth process -- a method that is within the reach of many labs, said study co-author Amanda Marciel, a William Marsh Rice Trustee Chair and assistant professor of chemical and biomolecular engineering at Rice.

"I think people are going to pick up this paper and say, 'Oh. I'm going to start doing this,'" Marciel said. "It's a really nice processing paper that goes into depth in a way that hasn't really been done before."

The name perovskite refers both to a specific mineral discovered in Russia in 1839 and to any compound with the crystal structure of that mineral. For example, halide perovskites can be made by mixing lead, tin and other metals with bromide or iodide salts. Research interest in halide perovskites skyrocketed after their potential for high-efficiency photovoltaics was demonstrated in 2012.

Mohite, who joined Rice in 2018, has researched halide perovskite photovoltaics for more than five years, especially 2D perovskites -- flat, almost atomically thin forms of the material that are more stable than their thicker cousins due to an inherent moisture resistance.

Mohite credited study co-lead author Siraj Sidhik, a Ph.D. student in his lab, with the idea of pursuing seeded growth.

"The idea that a memory or history -- a genetic sort of seed -- can dictate material properties is a powerful concept in materials science," Mohite said. "A lot of templating works like this. If you want to grow a single crystal of diamond or silicon, for example, you need a seed of a single crystal that can serve as template."

While seeded growth has often been demonstrated for inorganic crystals and other processes, Mohite said this is the first time it's been shown in organic 2D perovskites. The process for growing 2D perovskite films from seeds is identical in several respects to the classical process of growing such films. In the traditional method, precursor chemicals are measured out like the ingredients in a kitchen -- X parts of ingredient A, Y parts of ingredient B, and so on -- and these are dissolved in a liquid solvent. The resulting solution is spread onto a flat surface via spin-coating, a widely used technique that relies on centrifugal force to evenly spread liquids across a rapidly spun disk. As the solvent dissolves, the mixed ingredients crystalize in a thin film.

Mohite's group has made 2D perovskite films in this manner for years, and though the films appear perfectly flat to the naked eye, they are uneven at the nanometer scale. In some places, the film may be a single crystal in thickness, and in other places, several crystals thick.

"You end up getting something that is completely polydisperse, and when the size changes, the energy landscape changes as well," Mohite said. "What that means for a photovoltaic device is inefficiency, because you lose energy to scattering when charges encounter a barrier before they can reach an electrical contact."

In the seeded growth method, seeds are made by slow-growing a uniform 2D crystal and grinding it into a powder, which is dissolved into solvent instead of the individual precursors. The seeds contain the same ratio of ingredients as the classical recipe, and the resulting solution is spin-coated onto disks exactly as it would be in the original method. The evaporation and crystallization steps are also identical. But the seeded solution yields films with a homogeneous, uniform surface, much like that of the material from which the seeds were ground.

When Sidhik initially succeeded with the approach, it wasn't immediately clear why it produced better films. Fortunately, Mohite's lab adjoins Marciel's, and while she and her student, co-lead author Mohammad Samani, had not previously worked with perovskites, they did have the perfect tool for finding and studying any bits of undissolved seeds that might be templating the homogeneous films.

"We could track that nucleation and growth using light-scattering techniques in my group that we typically use to measure sizes of polymers in solution," Marciel said. "That's how the collaboration came to be. We're neighbors in the lab, and we were talking about this, and I was like, 'Hey, I've got this piece of equipment. Let's see how big these seeds are and if we can track them over time, using the same tools we use in polymer science.'"

The tool was dynamic light scattering, a mainstay technique in Marciel's group. It revealed that solutions reached an equilibrium state under certain conditions, allowing a portion of some seeds to remain undissolved in solution.

The research showed those bits of seed retained the "memory" of the perfectly uniform slow-grown crystal from which they were ground, and Samani and Marciel found they could track the nucleation process that would eventually allow the seeds to produce homogeneous thin films.

Mohite said the collaboration produced something that is often attempted and rarely achieved in nanomaterials research -- a self-assembly method to make macroscopic materials that live up to the promise of the individual nanoparticles of which they are composed.

"This is really the bane of nanomaterials technology," Mohite said. "At an individual, single element level, you have wonderful properties that are orders of magnitude better than anything else, but when you try to put them together into something macroscopic and useful, like a film, those properties just kind of go away because you cannot make something homogeneous, with just those properties that you want.

"We haven't yet done experiments on other systems, but the success with perovskites begs the question of whether this type of seeded approach might work in other systems as well," he said.

INFORMATION:

The research was supported by the Department of Energy's (DOE) Office of Energy Efficiency and Renewable Energy, the Academic Institute of France and the Office of Naval Research (N00014-20-1-2725) and made use of DOE facilities at Argonne National Laboratory and Brookhaven National Laboratory.

Links and resources:

The DOI of the Advanced Materials paper is: 10.1002/adma.202007176

A copy of the paper is available at: https://doi.org/10.1002/adma.202007176

High-resolution IMAGES are available for download at:

https://news-network.rice.edu/news/files/2021/06/0621_SEEDS-msss46-lg.jpg
CAPTION: Rice University engineering graduate students Mohammad Samani (left) and Siraj Sidhik discovered a seeded-growth method for creating 2D halide perovskite thin films with layers of uniform thickness. Homogeneous 2D perovskite films have been highly sought and are expected to lead to solar panels and other highly efficient and stable optoelectronic devices. (Photo by Jeff Fitlow/Rice University)

https://news-network.rice.edu/news/files/2021/06/0621-SEEDS-film15-lg.jpg
CAPTION: A thin film of 2D halide perovskite crystals of uniform thickness. Rice engineers discovered a self-assembly method for producing the films from "seeds," submicroscopic pieces of 2D crystals that serve as templates. (Photo by Jeff Fitlow/Rice University)

https://news-network.rice.edu/news/files/2021/06/0621-SEEDS-film16-lg.jpg
CAPTION: A thin film of 2D halide perovskite crystals that was grown with Rice University's seeded-growth method. The solution processing method yields thin films of remarkably uniform thickness, a highly sought feature that's expected to lead to high-efficiency solar panels and other optoelectronic devices. (Photo by Jeff Fitlow/Rice University)

https://news-network.rice.edu/news/files/2021/06/0621-SEEDS-seeds37a-lg.jpg
CAPTION: Rice University chemical engineering graduate student Siraj Sidhik holds a container of 2D perovskite "seeds" (left) and a smaller vial containing a solution of dissolved seeds that can be used to produce thin films for use in highly efficient optoelectronic devices like high efficiency solar panels. (Photo by Jeff Fitlow/Rice University)

https://news-network.rice.edu/news/files/2021/06/0621-SEEDS-mohite63-lg.jpg
CAPTION: Aditya Mohite (Photo by Jeff Fitlow/Rice University)

https://news-network.rice.edu/news/files/2021/06/0621-SEEDS-marciel-lg.jpg
CAPTION: Amanda Marciel (Photo by Jean Lachat)

This release can be found online at news.rice.edu.

Follow Rice News and Media Relations via Twitter @RiceUNews.

Located on a 300-acre forested campus in Houston, Rice University is consistently ranked among the nation's top 20 universities by U.S. News & World Report. Rice has highly respected schools of Architecture, Business, Continuing Studies, Engineering, Humanities, Music, Natural Sciences and Social Sciences and is home to the Baker Institute for Public Policy. With 3,978 undergraduates and 3,192 graduate students, Rice's undergraduate student-to-faculty ratio is just under 6-to-1. Its residential college system builds close-knit communities and lifelong friendships, just one reason why Rice is ranked No. 1 for lots of race/class interaction and No. 1 for quality of life by the Princeton Review. Rice is also rated as a best value among private universities by Kiplinger's Personal Finance.


[Attachments] See images for this press release:
Solar energy collectors grown from seeds

ELSE PRESS RELEASES FROM THIS DATE:

Physicists made photons be friends with magnons

Physicists made photons be friends with magnons
2021-06-21
A team of scientists from NUST MISIS and MIPT have developed and tested a new platform for realization of the ultra-strong photon-to-magnon coupling. The proposed system is on-chip and is based on thin-film hetero-structures with superconducting, ferromagnetic and insulating layers. This discovery solves a problem that has been on the agenda of research teams from different countries for the last 10 years, and opens new opportunities in implementing quantum technologies. The study was published in the highly ranked journal Science Advances. The last decade has seen significant progress ...

New research unlocks the mystery of New England's beaches

New research unlocks the mystery of New Englands beaches
2021-06-21
AMHERST, Mass. - Millions of Americans will visit New England's beaches this summer to cool off, play in the waves and soak up the sun. Until now, the factors governing which beaches slope gradually to the sea and which ones end abruptly in a steep drop-off have been largely unknown. However, new research from the University of Massachusetts Amherst reveals, with unprecedented detail, how the grain size of beach sand relates to the slope of the beach itself. These new findings are critical to understanding how New England's beaches will respond to both rising sea levels and increased storm activity. Many of New England's beaches are made up of a mixture of sand and small stones. Or, to be more precise, the grain sizes on these beaches are "bi-modal" ...

New cold atom source lays groundwork for portable quantum devices

New cold atom source lays groundwork for portable quantum devices
2021-06-21
WASHINGTON -- Although quantum technology has proven valuable for highly precise timekeeping, making these technologies practical for use in a variety of environments is still a key challenge. In an important step toward portable quantum devices, researchers have developed a new high-flux and compact cold-atom source with low power consumption that can be a key component of many quantum technologies. "The use of quantum technologies based on laser-cooled atoms has already led to the development of atomic clocks that are used for timekeeping on a national level," said research team ...

Japanese, Italian, US physicists reveal new measurements of high-energy cosmic rays

Japanese, Italian, US physicists reveal new measurements of high-energy cosmic rays
2021-06-21
New findings published this week in Physical Review Letters, Measurement of the Iron Spectrum in Cosmic Rays from 10??GeV/n to 2.0??TeV/n with the Calorimetric Electron Telescope on the International Space Station, suggest that cosmic ray nuclei of hydrogen, carbon and oxygen travel through the galaxy toward Earth in a similar way, but, surprisingly, that iron arrives at Earth differently. A series of recent publications based on results from the CALorimetric Electron Telescope, or CALET, instrument on the International Space Station, or ISS, have cast new light on the abundance of high-energy cosmic ray nuclei -- atoms stripped of their ...

Researchers discover how the intestinal epithelium folds and moves by measuring forces

Researchers discover how the intestinal epithelium folds and moves by measuring forces
2021-06-21
The human intestine is made up of more than 40 square meters of tissue, with a multitude of folds on its internal surface that resemble valleys and mountain peaks in order to increase the absorption of nutrients. The intestine also has the unique characteristic of being in a continuous state of self-renewal. This means that approximately every 5 days all the cells of its inner walls are renewed to guarantee correct intestinal function. Until now, scientists knew that this renewal could take place thanks to stem cells, which are protected in the so-called intestinal crypts, and which give rise to new differentiated cells. However, the process that leads to the concave shape of the crypts and the migration of new cells towards the intestinal peaks was unknown. Now, an international ...

New modeling technique shows greater likelihood, frequency of urban extreme heat events

New modeling technique shows greater likelihood, frequency of urban extreme heat events
2021-06-21
Extreme heat waves in urban areas are much more likely than previously thought, according to a new modeling approach designed by researchers including University of Illinois Urbana-Champaign Civil and Environmental Engineering (CEE) assistant professor Lei Zhao and alumnus Zhonghua Zheng (MS 16, PhD 20). Their paper with co-author Keith W. Oleson of the National Center for Atmospheric Research, "Large model structural uncertainty in global projections of urban heat waves," is published in the journal Nature Communications. Urban heat waves (UHWs) can be devastating; a 1995 heat wave in Chicago caused more than 1,000 deaths. Last year's heat wave on the west coast caused wildfires. ...

Switchable diurnal radiative cooling by doped VO2

Switchable diurnal radiative cooling by doped VO2
2021-06-21
In a new publication from Opto-Electronic Advances; DOI https://doi.org/10.29026/oea.2021.200006, Researchers led by Professor Junsuk Rho from Pohang University of Science and Technology (POSTECH), South Korea consider switchable diurnal radiative cooling by doped VO2. As the impacts of climate change are increasingly felt, thermoregulation technologies that do not consume external energy have attracted considerable attention in the field of energy-saving applications. Radiative cooling has received much research interest for its ability to cool an object even under direct solar illumination. Nanostructured materials, or multi-stacked layers, can be designed to control reflection and emission spectrum ...

New high-speed method for spectroscopic measurements

New high-speed method for spectroscopic measurements
2021-06-21
Researchers at Tampere University and their collaborators have shown how spectroscopic measurements can be made much faster. By correlating polarization to the colour of a pulsed laser, the team can track changes in the spectrum of the light by simple and extremely fast polarization measurements. The method opens new possibilities to measure spectral changes on a nanosecond time scale over the entire colour spectrum of light. In spectroscopy, often the changes of the wavelength, i.e. colour, of a probe light are measured after interaction with a sample. Studying these changes is one of the key methods to gain a deeper understanding of the properties ...

There's more to genes than DNA: how Mum and Dad add something extra, just for you

Theres more to genes than DNA: how Mum and Dad add something extra, just for you
2021-06-21
Biologists at the Universities of Bath and Vienna have discovered 71 new 'imprinted' genes in the mouse genome, a finding that takes them a step closer to unravelling some of the mysteries of epigenetics - an area of science that describes how genes are switched on (and off) in different cells, at different stages in development and adulthood. To understand the importance of imprinted genes to inheritance, we need to step back and ask how inheritance works in general. Most of the thirty trillion cells in a person's body contain genes that come from both their mother and father, with each parent contributing one version of each gene. The unique combination of genes goes part of ...

Running in the blood: Blood lipids are linked to cancer, but depending on family history

2021-06-21
Fat biomolecules in the blood, called "serum lipids," are necessary evils. They play important roles in the lipid metabolism and are integral for the normal functioning of the body. However, they have a darker side; according to several studies, they are associated with various cancers. The medical community has fathoms to go before truly understanding the implications of different serum lipid levels in cancer. As a major step in this direction, a group of scientists from the Key Laboratory of Carcinogenesis and Translational Research, Laboratory of Genetics, Peking University Cancer Hospital and Institute; Hua County People's Hospital; and Anyang Cancer Hospital, have successfully determined that a family history ...

LAST 30 PRESS RELEASES:

Black women hospitalised in USA with blood infection resistant to last-resort antibiotic at increased risk of death

NEC Society Statement on the Watson vs. Mead Johnson Verdict

Lemur’s lament: When one vulnerable species stalks another

Surf clams off the coast of Virginia reappear – and rebound

Studying optimization for neuromorphic imaging and digital twins

ORNL researchers win Best Paper award for nickel-based alloy tailoring

New beta-decay measurements in mirror nuclei pin down the weak nuclear force

Study uncovers neural mechanisms underlying foraging behavior in freely moving animals

Gene therapy is halting cancer. Can it work against brain tumors?

New copper-catalyzed C-H activation strategy from Scripps Research

New compound from blessed thistle promotes functional nerve regeneration

Auburn’s McCrary Institute, ORNL to partner on first regional cybersecurity center to protect the nation’s electricity grid

New UNC-Chapel Hill study examines the increased adoption of they/them pronouns

Groundbreaking study reveals potential diagnostic marker for multiple sclerosis years before symptom onset

Annals of Internal Medicine presents breaking scientific news at ACP’s Internal Medicine Meeting 2024

Scientists discover new way to extract cosmological information from galaxy surveys

Shoe technology reduces risk of diabetic foot ulcers

URI-led team finds direct evidence of ‘itinerant breeding’ in East Coast shorebird species

Wayne State researcher aims to improve coding peer review practices

Researchers develop a new way to safely boost immune cells to fight cancer

Compact quantum light processing

Toxic chemicals from microplastics can be absorbed through skin

New research defines specific genomic changes associated with the transmissibility of the monkeypox virus

Registration of biological pest control products exceeds that of agrochemicals in Brazil

How reflecting on gratitude received from family can make you a better leader

Wearable technology assesses surgeons’ posture during surgery

AATS and CRF® partner on New York Valves: The structural heart summit

Postpartum breast cancer and survival in women with germline BRCA pathogenic variants

Self-administered acupressure for probable knee osteoarthritis in middle-aged and older adults

2024 Communicator Award goes to “Cyber and the City” research team based in Tübingen

[Press-News.org] Solar energy collectors grown from seeds
Engineers create seeds for growing near-perfect 2D perovskite crystals