New technique reduces nicotine levels, harmful compounds simultaneously in tobacco
2021-07-12
(Press-News.org) North Carolina State University researchers have developed a new technique that can alter plant metabolism. Tested in tobacco plants, the technique showed that it could reduce harmful chemical compounds, including some that are carcinogenic. The findings could be used to improve the health benefits of crops.
"A number of techniques can be used to successfully reduce specific chemical compounds, or alkaloids, in plants such as tobacco, but research has shown that some of these techniques can increase other harmful chemical compounds while reducing the target compound," said De-Yu Xie, professor of plant and microbial biology at NC State and the corresponding author of a paper describing the research. "Our technology reduced a number of harmful compounds - including the addictive nicotine, the carcinogenic N-nitrosonornicotine (NNN), and other tobacco-specific nitrosamines (TSNAs) - simultaneously without detrimental effects to the plant."
The technique uses transcription factors and regulatory elements as molecular tools for new regulation designs. Regulatory elements are short, non-coding DNA fragments that control the transcription of nearby coding genes. Transcription factors are proteins that help turn certain genes on or off by binding to regulatory elements. Xie hypothesized that these could be useful molecular tools to design new regulations for engineering new plant traits. Two Arabidopsis transcription factors in particular, PAP1 and TT8, are known to regulate the biosynthesis of anthocyanins, or classes of nutraceutical compounds with antioxidant properties. Xie further hypothesized that these proteins could be used as molecular tools to help repress a number of harmful chemical compound levels, such as nicotine.
"PAP1 regulates pigmentation, so tobacco plants with our overexpressed PAP1 genes are red," Xie said. "We screened plant DNAs and found that tobacco has PAP1- and TT8-favored regulatory elements near JAZ genes, which repress nicotine biosynthesis. We then proposed that these elements were appropriate tools for a test. In all, we found four JAZ genes activated in red tobacco plants with a designed PAP1 and TT8 cassette overexpressed."
Xie and his colleagues tested the hypothesis by examining tobacco plants in the greenhouse and in the field and showed the reductions of harmful chemical compounds and nicotine in both types of experiments. NNN levels were reduced from 63 to 79% in leaves from tobacco plants that had PAP1 and TT8 overexpressed, for example. Overall, four carcinogenic TSNAs were significantly reduced by the technique.
Xie believes that the technique holds the potential to be used in other crop plants to promote other beneficial traits and make some foods healthier.
The paper appears in Journal of Advanced Research. Research associate Mingzhu Li is a first author of the paper. Former postdoctoral fellows Xianzhi He and Christophe La Hovary are co-first authors. The research was supported by the R.J. Reynolds Tobacco Co.
INFORMATION:
Note to editors: An abstract of the paper follows.
"A De Novo regulation design shows an effectiveness in altering plant secondary metabolism"
Authors: Mingzhuo Li, Xianzhi He, Christophe La Hovary, Yue Zhu, Yilun Dong, Shibiao Liu, Hucheng Xing, Yajun Liu, Yucheng Jie, Dongming Ma, Seyit Yuzuak and De-Yu Xie, NC State University
Published: June 20, 2021 in Journal of Advanced Research
DOI: 10.1016/j.jare.2021.06.017
Abstract:
Introduction
Transcription factors (TFs) and cis-regulatory elements (CREs) control gene transcripts involved in various biological processes. We hypothesize that TFs and CREs can be effective molecular tools for De Novo regulation designs to engineer plants.
Objectives
We selected two Arabidopsis TF types and two tobacco CRE types to design a De Novo regulation and evaluated its effectiveness in plant engineering.
Methods
G-box and MYB recognition elements (MREs) were identified in four Nicotiana tabacum JAZs (NtJAZs) promoters. MRE-like and G-box like elements were identified in one nicotine pathway gene promoter. TF screening led to select Arabidopsis Production of Anthocyanin Pigment 1 (PAP1/MYB) and Transparent Testa 8 (TT8/bHLH). Two NtJAZ and two nicotine pathway gene promoters were cloned from commercial Narrow Leaf Madole (NL) and KY171 (KY) tobacco cultivars. Electrophoretic mobility shift assay (EMSA), cross-linked chromatin immunoprecipitation (ChIP), and dual luciferase assays were performed to test the promoter binding and activation by PAP1 (P), TT8 (T), PAP1/TT8 together, and the PAP1/TT8/Transparent Testa Glabra 1 (TTG1) complex. A DNA cassette was designed and then synthesized for stacking and expressing PAP1 and TT8 together. Three years of field trials were performed by following industrial and GMO protocols. Gene expression and metabolic profiling were completed to characterize plant secondary metabolism.
Results
PAP1, TT8, PAP1/TT8, and the PAP1/TT8/TTG1 complex bound to and activated NtJAZ promoters but did not bind to nicotine pathway gene promoters. The engineered red P+T plants significantly upregulated four NtJAZs but downregulated the tobacco alkaloid biosynthesis. Field trials showed significant reduction of five tobacco alkaloids and four carcinogenic tobacco specific nitrosamines in most or all cured leaves of engineered P+T and PAP1 genotypes.
Conclusion
G-boxes, MREs, and two TF types are appropriate molecular tools for a De Novo regulation design to create a novel distant-pathway cross regulation for altering plant secondary metabolism.
[Attachments] See images for this press release:
ELSE PRESS RELEASES FROM THIS DATE:
2021-07-12
Snowmelt - the surface runoff from melting snow - is an essential water resource for communities and ecosystems. But extreme snow melt, which occurs when snow melts too rapidly over a short amount of time, can be destructive and deadly, causing floods, landslides and dam failures.
To better understand the processes that drive such rapid melting, researchers set out to map extreme snowmelt events over the last 30 years. Their findings are published in a new paper in the Bulletin of the American Meteorological Society.
"When we talk about snowmelt, people want to know the basic numbers, just like the weather, but no one has ever provided anything like that before. It's like if nobody told you the maximum and minimum temperature or record temperature in your city," said study co-author ...
2021-07-12
The transportation sector is the largest contributor to greenhouse gas emissions in the United States, and a lot of attention has been devoted to electric passenger vehicles and their potential to help reduce those emissions.
But with the rise of online shopping and just-in-time shipping, electric delivery fleets have emerged as another opportunity to reduce the transportation sector's environmental impact.
Though EVs represent a small fraction of delivery vehicles today, the number is growing. In 2019, Amazon announced plans to obtain 100,000 electric delivery vehicles. UPS has ordered 10,000 of them and FedEx plans to be fully electric by 2040.
Now, a study from University of Michigan ...
2021-07-12
New Brunswick, NJ--Children and adolescents with multisystem inflammatory syndrome in children (MIS-C) who are treated initially with intravenous immune globulin (IVIG) and glucocorticoids have reduced risk for serious short-term outcomes, including cardiovascular dysfunction, than those who receive an initial treatment of IVIG alone, a new study finds.
MIS-C is a rare but serious--and sometimes fatal--condition associated with COVID-19, in which different body organs or systems become inflamed, including the heart, lungs, kidneys, brain, skin, eyes, or gastrointestinal system. It can occur weeks after having COVID-19 and even if the child or caregivers did not know the child had been infected.
The new study, published in the New England Journal of Medicine, analyzed treatment ...
2021-07-12
Taken together, the bacteria, viruses, fungi and other microbes that live in our intestines form the gut microbiome, which plays a key role in the health of people and animals. In new research from the University of Minnesota, University of Notre Dame and Duke University, scientists found that genetics nearly always plays a role in the composition of the gut microbiome of wild baboons.
"In humans, research has shown that family members share a significant portion of microbes in their gut, but it's hard to answer if our microbiome is shaped more by nature, such as those ...
2021-07-12
A team led by researchers at Baylor College of Medicine found that a screening method known as untargeted metabolomics profiling can improve the diagnostic rate for inborn errors of metabolism, a group of rare genetic conditions, by about seven-fold when compared to the traditional metabolic screening approach.
The study, published in JAMA Network Open, shows that untargeted metabolomics identifies many more disorders of greater variety as compared to traditional methods, including disorders for which there was not a clinically available biochemical test. The researchers hope that adoption of metabolomics to screen for inborn errors of metabolism will result in a more rapid, more efficient ...
2021-07-12
The sharp eyes of an eagle, the extraordinary hearing of an owl - to successfully find food, the eyes and ears of birds have adapted optimally to their living conditions. Until now, the sense of smell has played a rather subordinate role. When meadows are freshly mowed, storks often appear there to search for snails and frogs. Researchers at the Max Planck Institute for Animal Behavior in Radolfzell and the Max Planck Institute for Chemistry in Mainz have now studied the birds' behavior and discovered that the storks are attracted by the smell of the mown grass. Only storks that were downwind and could thus perceive the smell reacted to the mowing. The scientists also sprayed a meadow with a spray of green leaf scents released during mowing. Storks appeared here as well. This ...
2021-07-12
Recall a phone number or directions just recited and your brain will be actively communicating across many regions. It is thought that working memory relies on interactions between these regions, but how these brain areas interact and properly represent memory has remained a mystery.
At Baylor College of Medicine, Dr. Nuo Li, assistant professor of neuroscience and a McNair Scholar, and his colleagues investigated the nature of the communication between brain regions involved in working memory and found evidence that a modular network organization is critical for ...
2021-07-12
The function of a protein can depend on its abundance in a cell. So, when investigating the properties of a new protein, it is essential to make sure that the same amount is produced by every cell. Researchers at Baylor College of Medicine and Rice University have found a new way to do just that through the creation of new genetic circuits called Equalizers.
The findings, in the current edition of Nature Communications, show how researchers engineered these genetic circuits to buffer protein output from variations in the number of copies of the gene inside the cell, thereby helping to create consistent protein expression. This property is called "gene dosage compensation."
The researchers use an analogy of heating ...
2021-07-12
Pure quantum systems can undergo phase transitions analogous to the classical phase transition between the liquid and gaseous states of water. At the quantum level, however, the particle spins in states that emerge from phase transitions display collective entangled behavior. This unexpected observation offers a new avenue for the production of materials with topological properties that are useful in spintronics applications and quantum computing.
The discovery was made by an international collaboration led by Julio Larrea, a professor at the University of São ...
2021-07-12
DURHAM, N.C. -- You know your dog gets your gist when you point and say "go find the ball" and he scampers right to it.
This knack for understanding human gestures may seem unremarkable, but it's a complex cognitive ability that is rare in the animal kingdom. Our closest relatives, the chimpanzees, can't do it. And the dogs' closest relative, the wolf, can't either, according to a new Duke University-led study published July 12 in the journal Current Biology.
More than 14,000 years of hanging out with us has done a curious thing to the minds of dogs. They have what are known as "theory of mind" abilities, or mental skills allowing them to infer what humans are thinking and feeling in some situations.
The study, a comparison of 44 ...
LAST 30 PRESS RELEASES:
[Press-News.org] New technique reduces nicotine levels, harmful compounds simultaneously in tobacco