No stone unturned: An extensive search for cation substitution in lithium-ion batteries
Scientists demonstrate an inexpensive computational technique to screen for atomic substitutions in lithium-ion batteries to boost their capacity
2021-07-19
(Press-News.org) Ishikawa, Japan - Powering everything from smartphones to electric cars, lithium-ion batteries (LIBs) have evolved markedly with advances in technology and revolutionized our world. The next step in the progress of technology is developing even better batteries to power electronic devices for longer durations. One promising technique for increasing battery performance involves the atomic substitution of positively charged ions or "cations" in the cathode material. However, doing so systematically for different substituent cations to determine the ideal ones experimentally is complex and expensive, leaving us with simulations as the only viable option for narrowing down the choices.
Several studies have reported an improved battery life and thermal stability based on their findings using a simulation-based approach. However, such improvements have, in turn, lowered the discharge capacity of the battery, which is the amount of energy that a battery can supply in a single discharge. As a result, an extensive search must be performed for the cation substituent that enhances the discharge capacity.
Against this backdrop, a team of scientists led by Prof. Ryo Maezono from Japan Advanced Institute of Science and Technology (JAIST) conducted an extensive screening of different cations for partial substitution of nickel in a nickel-based LIB with the intent of enhancing the battery discharge capacity.
"The discharge capacity can be determined using the discharge profile, which is the voltage change during the charge-discharge process," explains Prof. Maezono. "We used first-principles calculations to evaluate the discharge profiles of materials that, in turn, determines their discharge capacities. However, these calculations are computationally costly, so we integrated other methods to narrow down the candidates for cation replacement. To the best of our knowledge, this is the first study that successfully predicts cation substitution to increase battery capacity." The groundbreaking study has been published in a recent issue of The Journal of Physical Chemistry C.
A prominent strategy for successfully predicting the discharge voltage profile is the "strongly constrained and appropriately normed" (SCAN) functional. However, due to the large computing costs involved, such methods are impractical for extensive screening. So, the team began by using relatively inexpensive techniques such as density functional theory and cluster expansion to identify suitable candidates for cation replacement and then applied SCAN functional to the inferred candidates to assure reliability and accuracy in voltage predictions.
The screening process revealed that the highest discharge capacity was obtained when nickel was partially substituted with platinum and palladium in nickel-based LIB. These results were consistent with the experimental data, validating the proposed methodology.
While Prof. Maezono emphasizes the need for additional research, he is optimistic about the future of their low-cost screening process. "Our findings indicate that substituents such as rhenium and osmium offer high discharge capacities. However, these elements are rare and costly, and putting them to practical use would be challenging. Further study is needed to achieve the same effect with less substitution, multiple element substitution, or anion substitution," he says. "Having said that, our novel computational technique will accelerate the search for optimal materials that improve battery performance at lower costs, allowing us to replace the bulk of our current electricity sources with carbon-free alternatives."
Hopefully, such advances will bring humankind one step closer to becoming an environment-friendly species in the near future!
INFORMATION:
Reference
Title of original paper: "High-Throughput Evaluation of Discharge Profiles of Nickel Substitution in LiNiO2 by Ab Initio Calculations"
Journal: The Journal of Physical Chemistry C
DOI: 10.1021/acs.jpcc.0c11589
About Japan Advanced Institute of Science and Technology, Japan
Founded in 1990 in Ishikawa prefecture, the Japan Advanced Institute of Science and Technology (JAIST) was the first independent national graduate school in Japan. Now, after 30 years of steady progress, JAIST has become one of Japan's top-ranking universities. JAIST counts with multiple satellite campuses and strives to foster capable leaders with a state-of-the-art education system where diversity is key; about 40% of its alumni are international students. The university has a unique style of graduate education based on a carefully designed coursework-oriented curriculum to ensure that its students have a solid foundation on which to carry out cutting-edge research. JAIST also works closely both with local and overseas communities by promoting industry-academia collaborative research.
About Professor Ryo Maezono from Japan Advanced Institute of Science and Technology, Japan
Dr. Ryo Maezono has been a Professor at the School of Information Science at the Japan Advanced Institute of Science and Technology (JAIST) since 2017. He earned his PhD from the University of Tokyo in 2000 and worked as a researcher at the National Institute for Materials Science in Ibaraki, Japan from 2001 to 2007. His research areas include material informatics and condensed matter theory using high-performance computing. He is a senior researcher with 101 papers and 1519 citations to his name.
Funding information
This research received financial support from HPCI System Research Project (Project ID: hp190169), MEXT-KAKENHI (JP16H06439, JP17K17762, JP19K05029, JP19H05169, JP19H04692, and JP16KK0097), FLAGSHIP2020 (Project Nos. hp190169 and hp190167 at K-computer), the Air Force Office of Scientific Research (AFOSR-AOARD/FA2386-17-1-4049; FA2386-19- 1-4015), and JSPS Bilateral Joint Projects (with India DST).
[Attachments] See images for this press release:
ELSE PRESS RELEASES FROM THIS DATE:
2021-07-19
This summer, if you see a butterfly with wings that are blue on top with orange spots underneath, you may have crossed paths with a male European Common Blue (or Polyommatus icarus), a newly introduced species in Canada.
Could it be a fluke? Probably not, according to a group of researchers from the University of Ottawa who have taken a close look at this captivating blue creature. They are in fact the first to study its ecology.
"The results of our study suggest that the Polyommatus icarus (P. icarus) could become widespread in the future since it prefers urban areas," said uOttawa PhD student Stephanie Rivest, who is the first ...
2021-07-19
The final stage of cataclysmic explosions of dying massive stars, called supernovae, could pack an up to six times bigger punch on the surrounding interstellar gas with the help of cosmic rays, according to a new study led by researchers at the University of Oxford. The work will be presented by PhD student Francisco Rodríguez Montero today (19 July) at the virtual National Astronomy Meeting (NAM 2021).
When supernovae explode, they emit light and billions of particles into space. While the light can freely reach us, particles become trapped in spiral loops by magnetic shockwaves generated during the explosions. Crossing back and forth through shock fronts, these particles are accelerated almost to the speed of light and, on escaping the supernovae, are thought ...
2021-07-19
Living organisms are often exposed to stress stimuli generated either by external or internal factors, and they need to respond accordingly. At a cellular level, stress usually triggers the activation of survival pathways that contribute to the recovery of cell homeostasis. However, when stress is too high, a process of cell death is initiated that eliminates the damaged cell.
Scientists led by ICREA researcher Dr. Angel Nebreda, head of the Signalling and Cell Cycle laboratory at IRB Barcelona, have identified an important role of the p38-MK2 pathway in determining cell fate in response to stress.
"Our ...
2021-07-19
Computer vision technology is increasingly used in areas such as automatic surveillance systems, self-driving cars, facial recognition, healthcare and social distancing tools. Users require accurate and reliable visual information to fully harness the benefits of video analytics applications but the quality of the video data is often affected by environmental factors such as rain, night-time conditions or crowds (where there are multiple images of people overlapping with each other in a scene). Using computer vision and deep learning, a team of researchers led by Yale-NUS College Associate Professor of Science (Computer Science) Robby Tan, who is also from the National University of Singapore's (NUS) Faculty of Engineering, ...
2021-07-19
Researchers at the RIKEN Center for Integrative Medical Sciences (IMS) have discovered that acetate, a major metabolite produced by some intestinal bacteria, is involved in regulating other intestinal bacteria. Specifically, experiments showed that acetate could trigger an immune response against potentially harmful bacteria. The findings, published in the scientific journal Nature, will lead to the development of new ways to regulate the balance of intestinal bacteria.
You may be surprised to know that 40 trillion important bacteria live in our intestines. They help keep us healthy by producing essential nutrients and eliminating foreign pathogens. On the other ...
2021-07-19
Some COVID-19 patients who experience acute respiratory failure respond by significantly increasing their respiratory effort - breathing faster and more deeply
There is concern among some doctors that this level of respiratory effort can lead to further damage to these patients' lungs.
Working with an international team of leading intensive care clinicians, engineering researchers at the University of Warwick have used computational modelling to provide new evidence that high respiratory efforts in COVID-19 patients can produce pressures and strains inside the lung that can result in injury.
The impact of high breathing efforts on the lungs of patients suffering with acute respiratory failure due to COVID-19 ...
2021-07-19
The carbon-hydrogen bonds in alkanes--particularly those at the ends of the molecules, where each carbon has three hydrogen atoms bound to it--are very hard to "crack" if you want to replace the hydrogen atoms with other atoms. Methane (CH(4)) and ethane (CH(3)CH(3)) are made up, exclusively, of such tightly bound hydrogen atoms. In the journal Angewandte Chemie, a team of researchers has now described how they break these bonds while forming new carbon-nitrogen bonds (amidation).
If it were possible to easily break the C-H bonds in hydrocarbons, it would be possible to synthesize complex organic ...
2021-07-19
The struggle to get your child to go to sleep and stay asleep is something most parents can relate to. Once the bedtime battle is over and the kids have finally nodded off, many parents tune out as well.
But University of South Australia researcher Professor Kurt Lushington is calling for parents to check on their small snoozers before switching off.
He says knowing the quality of a child's sleep is important, as it could be an indicator of sleep-disordered breathing - an under-reported medical condition that can affect a child's health and wellbeing.
"During sleep, the muscles keeping the upper airway stiff relax, and as a consequence, the airway narrows, which ...
2021-07-19
Computer vision has progressed much over the past decade and made its way into all sorts of relevant applications, both in academia and in our daily lives. There are, however, some tasks in this field that are still extremely difficult for computers to perform with acceptable accuracy and speed. One example is object tracking, which involves recognizing persistent objects in video footage and tracking their movements. While computers can simultaneously track more objects than humans, they usually fail to discriminate the appearance of different objects. This, in turn, can lead to the algorithm to mix up objects in a scene and ultimately produce incorrect tracking results.
At the Gwangju Institute of Science ...
2021-07-19
A new Tel Aviv University study found that, like humans, bats living in Tel Aviv enjoy the wide variety and abundance of food that the city has to offer, in contrast to rural bats living in Beit Guvrin, who are content eating only one type of food. The study was led by research student Katya Egert-Berg, under the guidance of Prof. Yossi Yovel, head of Tel Aviv University's Sagol School of Neuroscience and a faculty member of the School of Zoology in the George S. Wise Faculty of Life Sciences and the Steinhardt Museum of Natural History, as well as a recipient of the 2021 Kadar Family Award for Outstanding ...
LAST 30 PRESS RELEASES:
[Press-News.org] No stone unturned: An extensive search for cation substitution in lithium-ion batteries
Scientists demonstrate an inexpensive computational technique to screen for atomic substitutions in lithium-ion batteries to boost their capacity