Fluorescent visualization and evaluation of NPC1L1-mediated cholesterol absorption at the levels of endocytic vesicles
2023-03-28
(Press-News.org)
Excessive cholesterol absorption from intestinal lumen contributes to the pathogenesis of hypercholesterolemia, which is a well-established risk factor for atherosclerotic cardiovascular disease. The absorption of intestinal cholesterol is primarily mediated by Niemann-Pick C1-like 1 (NPC1L1) protein, which is responsible for about 70% cholesterol absorption. NPC1L1-deficient mice are resistant to diet-induced hypercholesterolemia, which provides a compelling strategy for intervention the related diseases through inhibiting NPC1L1 expression or activity.
NPC1L1 protein is expressed in the brush border membrane of small intestine. The protein is extensively N-glycosylated and composed of 1332 amino acids with 13 transmembrane segments, which makes it hard to prepare an ideal antibody to analyze its behavior in vivo. Based on the studies using cell lines in vitro, it is putatively regarded that NPC1L1 mediates cholesterol absorption through clathrin-mediated endocytosis. However, this notion also has some unresolved challenge. Actually, the endocytic vesicles of NPC1L1 with cholesterol have not been demonstrated under physiological conditions, since it lacks a feasible tool to visualize and evaluate the endocytosis of NPC1L1 vesicles in vivo.
Using CRISPR/Cas9 gene editing technology, scientists from Naval Medical University in China generated a mouse model in which the endogenous NPC1L1 protein was tagged with enhanced green fluorescent protein (EGFP). The NPC1L1-EGFP mice enable the researchers to fluorescently visualize and evaluate the vesicular endocytosis of NPC1L1-cago during intestinal cholesterol absorption. This study was published online in Life Metabolism on March 2023, with the title of “Fluorescent visualization and evaluation of NPC1L1-mediated vesicular endocytosis during intestinal cholesterol absorption in mice”.
In this study, the homozygous NPC1L1-EGFP knock-in mice were found to have normal cholesterol homeostasis on the chow or high-cholesterol diet conditions. The fluorescence of NPC1L1-EGFP fusion protein localized at the brush border membrane of the villus rather than the crypts in the duodenum, jejunum, and ileum, but not colon. The pattern is consistent with the characteristics of endogenous NPC1L1 distribution in the control mice. The EGFP-positive vesicles were visualized beneath the brush border membrane as early as 5 min and peaking at 15 min post oral gavage of cholesterol. Of note, the vesicles colocalized with the early endosomal marker EEA1 and the filipin-stained free cholesterol, and cholesterol gavage triggered the accumulation of EEA1-positive vesicles beneath the brush border membrane. Pretreatment with NPC1L1 inhibitor ezetimibe inhibited the formation of these cholesterol-induced endocytic vesicles, further supporting that the vesicular endocytosis is involved in NPC1L1-mediated cholesterol absorption. This study, for the first time, clearly demonstrates free cholesterol in NPC1L1 endocytic vesicles during intestinal cholesterol absorption under the physiological condition. It provides a feasible tool to evaluate the vesicular endocytosis of NPC1L1-cargos as well as cholesterol absorption in vivo under pathophysiological and pharmacological conditions, and can be used in drug discovery.
In addition, given that NPC1L1 also mediates intestinal absorption of non-cholesterol sterols such as phytosterols and tocopherol, this mouse model is also beneficial for those researchers in the field of sitosterolemia and vitamin E deficiency.
###
Reference: Xiaojing Wu et al. (2023) Fluorescent visualization and evaluation of NPC1L1-mediated vesicular endocytosis during intestinal cholesterol absorption in mice. Life Metabolism. https://doi.org/10.1093/lifemeta/load011.
About Higher Education Press
Founded in May 1954, Higher Education Press Limited Company (HEP), affiliated with the Ministry of Education, is one of the earliest institutions committed to educational publishing after the establishment of P. R. China in 1949. After striving for six decades, HEP has developed into a major comprehensive publisher, with products in various forms and at different levels. Both for import and export, HEP has been striving to fill in the gap of domestic and foreign markets and meet the demand of global customers by collaborating with more than 200 partners throughout the world and selling products and services in 32 languages globally. Now, HEP ranks among China’s top publishers in terms of copyright export volume and the world’s top 50 largest publishing enterprises in terms of comprehensive strength.
About Life Metabolism
Life Metabolism is a fully open access, peer-reviewed journal that publishes one volume per year online, providing a platform for the publication of works of high significance and broad interest in all areas of metabolism. Life Metabolism welcomes several different article types, including original article, review article, research highlight, letter, editorial, perspective, and so on. Once a paper is accepted, Life Metabolism can publish a precopyedited, preproofed version of the paper online within 48 hours of receiving a signed licence, and this will be replaced by a copyedited, proofed version of the paper as soon as it is ready. The Editors-in-Chief are professors Peng Li at Tsinghua University and John R Speakman at University of Aberdeen, UK. In the first three years, there will be no publication costs for publishing in Life Metabolism, and Open Access fees will be waived.
END
ELSE PRESS RELEASES FROM THIS DATE:
2023-03-28
Today, the Biden-Harris Administration announced Darleane C. Hoffman and Gabor A. Somorjai as recipients of the Enrico Fermi Presidential Award, one of the oldest and most prestigious science and technology honors bestowed by the U.S. government.
“Dr. Hoffman and Dr. Somorjai’s work to open the frontiers of radiochemistry and surface chemistry helped change what was possible, and advanced efforts to tackle some of the world’s greatest challenges,” said Assistant to the President and Director of the White House Office of Science and Technology Policy Arati Prabhakar. “They are world-class ...
2023-03-28
Key findings:
There are no vaccines or therapies available for lymphocytic choriomeningitis virus (LCMV) infection. This pathogen spreads easily and is extremely common in people worldwide.
Infection with LCMV can cause birth defects in developing fetuses, and severe illness and even death in the immuncompromised.
New findings from La Jolla Institute for Immunology (LJI) scientists show how an engineered antibody can target LCMV and neutralize the virus. They found this antibody has the potential to both prevent infection and treat an already established infection.
With this better understanding of LCMV's weak spots, scientists can move forward ...
2023-03-28
The COVID-19 pandemic posed an immense challenge on the health care industry in 2020 and 2021. While hospitals were inundated with COVID-19 cases, other illnesses such as respiratory syncytial virus (RSV) saw a decrease in hospital visits, particularly in the fourth quarter of 2020 and the first quarter of 2021.
A Texas A&M University School of Public Health study recently published in the journal Frontiers found that while there were an unusually low number of hospitalizations in 2020, there was an unusual peak in the third quarter of 2021, when hospital admissions for RSV were approximately twice ...
2023-03-28
A cold sparkling water.
Waves crashing on the beach.
The crackle of a bonfire.
Steam from a kettle.
These are not only the makings of a relaxing weekend, but also sources of aerosols in our environment. Though some of these sources of aerosols aren’t much of a concern, aerosols originating from industrial sources, such as wastewater treatment plants, and even natural sources, such as sea spray and dust, have the capacity to make more of an impact on the environment and even public health.
An aerosol ...
2023-03-28
A new supplemental issue to The Journals of Gerontology, Series B: Psychological Sciences and Social Sciences features papers resulting from a gathering of experts that emphasized racial/ethnic and contextual factors in the study of Alzheimer’s disease and related dementias (ADRD) care using a team science approach.
According to this journal issue, titled “ADRD Care in Context,” recent estimates indicate that 6.5 million people in the U.S. live with ADRD, and more than 11 million Americans care for people with these conditions, providing 16 billion hours (valued at $271 billion) of unpaid assistance annually. Further, older adults from minoritized ...
2023-03-28
Cambridge, Mass. – On October 9, 2022, an intense pulse of gamma-ray radiation swept through our solar system, overwhelming gamma-ray detectors on numerous orbiting satellites, and sending astronomers on a chase to study the event using the most powerful telescopes in the world.
The new source, dubbed GRB 221009A for its discovery date, turned out to be the brightest gamma-ray burst (GRB) ever recorded.
In a new study that appears today in the Astrophysical Journal Letters, observations of GRB 221009A spanning from radio ...
2023-03-28
At 2AM of March 29, 2023 (Beijing Time), the Institute of High Energy Physics (IHEP) of the Chinese Academy of Sciences (CAS), together with some 40 research institutions worldwide, released their latest discoveries on the brightest Gamma-Ray Burst (dubbed as GRB 221009A) ever detected by human.
With the unique observations made by two Chinese space telescopes, namely Insight-HXMT and GECAM-C, scientists were able to accurately measure how bright and how much energy released by this burst, which is the key to understand this historical event.
For ...
2023-03-28
A team of scientists led by the Department of Energy’s Oak Ridge National Laboratory designed a molecule that disrupts the infection mechanism of the SARS-CoV-2 coronavirus and could be used to develop new treatments for COVID-19 and other viral diseases.
The molecule targets a lesser-studied enzyme in COVID-19 research, PLpro, that helps the coronavirus multiply and hampers the host body’s immune response. The molecule, called a covalent inhibitor, forms a strong chemical bond with its intended protein target and thus increases its effectiveness as an antiviral treatment.
“We’re ...
2023-03-28
GRAND RAPIDS, Mich. (March 28, 2023) — A team led by Van Andel Institute and Max Planck Institute of Immunobiology and Epigenetics scientists has identified two distinct subtypes of insulin-producing beta cells, or ß cells, each with crucial characteristics that may be leveraged to better understand and treat Type 1 and Type 2 diabetes.
ß cells are critical guardians of the body’s metabolic balance. They are the only cells capable of producing insulin, which regulates blood sugar levels by designating dietary sugar for immediate use ...
2023-03-28
LAWRENCE — When the Kinks’ Ray Davies penned the tune “Last of the Steam-Powered Trains,” the vanishing locomotives stood as nostalgic symbols of a simpler English life. But for a paleontologist at the University of Kansas, the replacement of steam-powered trains with diesel and electric engines, as well as cars and trucks, might be a model of how some species in the fossil record died out.
Bruce Lieberman, professor of ecology & evolutionary biology and senior curator of invertebrate paleontology at the KU Biodiversity Institute & Natural History Museum, sought to use steam-engine history to test the merits of “competitive exclusion,” ...
LAST 30 PRESS RELEASES:
[Press-News.org] Fluorescent visualization and evaluation of NPC1L1-mediated cholesterol absorption at the levels of endocytic vesicles