Novel supercapacitor for energy storage applications
2023-03-31
(Press-News.org)
Researchers at the Department of Instrumentation and Applied Physics (IAP), Indian Institute of Science (IISc), have designed a novel ultramicro supercapacitor, a tiny device capable of storing an enormous amount of electric charge. It is also much smaller and more compact than existing supercapacitors and can potentially be used in many devices ranging from streetlights to consumer electronics, electric cars and medical devices.
Most of these devices are currently powered by batteries. However, over time, these batteries lose their ability to store charge and therefore have a limited shelf-life. Capacitors, on the other hand, can store electric charge for much longer, by virtue of their design. For example, a capacitor operating at 5 volts will continue to operate at the same voltage even after a decade. But unlike batteries, they cannot discharge energy constantly – to power a mobile phone, for example.
Supercapacitors, on the other hand, combine the best of both batteries and capacitors – they can store as well as release large amounts of energy, and are therefore highly sought-after for next-generation electronic devices.
In the current study, published in ACS Energy Letters, the researchers fabricated their supercapacitor using Field Effect Transistors or FETs as the charge collectors, instead of the metallic electrodes that are used in existing capacitors. “Using FET as an electrode for supercapacitors is something new for tuning charge in a capacitor,” says Abha Misra, Professor at IAP and corresponding author of the study.
Current capacitors typically use metal oxide-based electrodes, but they are limited by poor electron mobility. Therefore, Misra and her team decided to build hybrid FETs consisting of alternating few-atoms-thick layers of molybdenum disulphide (MoS2) and graphene – to increase electron mobility – which are then connected to gold contacts. A solid gel electrolyte is used between the two FET electrodes to build a solid-state supercapacitor. The entire structure is built on a silicon dioxide/silicon base.
“The design is the critical part, because you are integrating two systems,” says Misra. The two systems are the two FET electrodes and the gel electrolyte, an ionic medium, which have different charge capacities. Vinod Panwar, PhD student at IAP and one of the lead authors, adds that it was challenging to fabricate the device to get all the ideal characteristics of the transistor right. Since these supercapacitors are very small, they cannot be seen without a microscope, and the fabrication process requires high precision and hand-eye coordination.
Once the supercapacitor was fabricated, the researchers measured the electrochemical capacitance or charge-holding capacity of the device by applying various voltages. They found that under certain conditions, the capacitance increased by 3000%. By contrast, a capacitor containing just MoS2 without graphene showed only an 18% enhancement in capacitance under the same conditions.
In the future, the researchers are planning to explore if replacing MoS2 with other materials can increase the capacitance of their supercapacitor even more. They add that their supercapacitor is fully functional and can be deployed in energy-storage devices like electric car batteries or any miniaturised system by on-chip integration. They are also planning to apply for a patent on the supercapacitor.
END
[Attachments] See images for this press release:
ELSE PRESS RELEASES FROM THIS DATE:
2023-03-31
Ishikawa, Japan -- In the past few years, “AI” has become a major buzzword in technology. The prospect of a computer being able to do tasks which only a human could perform is a captivating thought indeed! AIs can be created using multiple different methods, but one of the most popular ones right now involves the use of deep neural networks (DNNs). These structures try to mimic the neural connections and function of the brain and are generally trained on a dataset before they are deployed in the real world. By training them on a dataset beforehand, ...
2023-03-31
The poisonous birds inhabit one of Earth’s most pristine rainforests, a place as exotic as no other in the world. Hearing the words poisonous and bird coupled will be an eye-opener for most. But poisonous birds actually exist. And now, more species have been discovered in New Guinea’s jungles.
"We managed to identify two new species of poisonous birds on our most recent trip. These birds contain a neurotoxin that they can both tolerate and store in their feathers," says Knud Jønsson of the Natural History Museum of Denmark.
Jønsson and fellow UCPH researcher, Kasun ...
2023-03-31
Antarctic sea ice is an important component of the climate system, and may act as an early indicator of climate change. Under global warming, significant changes in Antarctic sea ice have been observed. Specifically, it experienced a slow increase during 1979–2014, but a rapid decline thereafter. Despite a modest recovery after the record minimum in 2017, the sea ice area during austral summer 2022 (December 2021 to February 2022) again hit a new record minimum, at 3.07 million km2, which is approximately a 25% reduction compared with its long-term mean during 1981–2010. The largest decline occurred in two regions: the central-eastern Ross Sea ...
2023-03-31
Manganese oxides are natural reactive minerals and widely spread in aquatic and terrestrial environments, affecting the fate of metals (such as As3+ and Cd2+) and organic pollutants (such as phenols and diclofenac) through adsorption and oxidation in sewage treatment. Usually, the manganese (III/IV) oxides in the environment are thought to be formed by the oxidation of dissolved Mn(II) through abiotic or biotic processes. Oxidation of aqueous Mn(II) by dissolved oxygen is thermodynamically favored, but the kinetic is slow due to the high energy barrier of the reaction from dissolved ...
2023-03-31
End-of-dry-season CO2 pulses recur each year in the atmosphere above the Australian continent, a discovery made by an international research team led by environmental physicist Prof. Dr André Butz of Heidelberg University. To investigate the carbon fluxes over Australia, the researchers studied atmospheric CO2 measurements. Their analyses show that CO2 emissions spike when heavy rain falls on dried-out soil, thus activating microorganisms in that soil. The findings suggest that dry regions have a greater influence on the variations in the global carbon cycle than previously thought.
The Australian continent is dominated by dry ecosystems and widely varying precipitation patterns. ...
2023-03-31
Ants are pretty much everywhere. There are more than 14,000 different species, spread over every continent except Antarctica, and researchers have estimated that there are more than four quadrillion individual ants on Earth-- that’s 4,000,000,000,000,000. But how ants evolved to take over the world is still a mystery. In a new study in the journal Evolution Letters, scientists used a combination of fossils, DNA, and data on the habitat preferences of modern species to piece together how ants and ...
2023-03-31
Now, Professor Niu serves as deputy director of the National Engineering Research Center of Tree Breeding and Ecological Restoration, deputy secretary general and standing member of the Pine Branch of the Chinese Society of forestry. He was selected as the national young top-notch talent of “Ten Thousand Talents Program”, leading talent of forest and grassland and technology innovation of the National Forestry and Grassland Administration (NFGA), outstanding young scholarship of “Beilin Scholars Program” of Beijing Forestry University, etc. He also served as an evaluation committee member ...
2023-03-31
Burnout is associated with adverse outcomes including medical errors and lower quality of care. While many studies have focused on physician or nurse burnout, the COVID-19 pandemic increased stress across the healthcare workforce, including support staff and healthcare teams who have a crucial role in patient care. A new study of 206 healthcare organizations led by investigators from Brigham and Women’s Hospital, a founding member of the Mass General Brigham healthcare system, identified high levels of burnout, intent to leave the profession, and work overload across all members of the healthcare ...
2023-03-31
CORVALLIS, Ore. – Researchers at Oregon State University have created a means of speeding up and improving the evaluation process for drugs used to combat cervical cancer.
The study led by Kaitlin Fogg, assistant professor of biological engineering in the OSU College of Engineering, is important because the American Cancer Society estimates that nearly 14,000 new cervical cancer cases will be diagnosed in the United States this year and that more than 4,000 women will die from the disease.
Findings were published in the Journal of Biomedical Materials Research.
Fogg and graduate students in the College of Engineering ...
2023-03-31
The kidney plays a vital role in maintaining homeostasis within the body by eliminating toxic and superfluous substances in the bloodstream, including waste generated during metabolic processes, through urine. Nevertheless, toxicity can also be induced in the kidney from certain medications. Recently, a research team from POSTECH has engineered an artificial kidney that allows for the early detection of adverse drug reactions.
The POSTECH research team led by Professor Dong-Woo Cho and Professor Jinah Jang (Department ...
LAST 30 PRESS RELEASES:
[Press-News.org] Novel supercapacitor for energy storage applications