A panoramic view on lithium-mediated electrochemical dinitrogen reduction reaction
2023-04-24
(Press-News.org)
The Haber-Bosch process is the industrial approach for NH3 production today, which must be operated at energy-intensive high temperatures and pressures. The reduction of dinitrogen (N2) by electrocatalysis offers an alternative way for NH3 production at ambient conditions and a variety of electrocatalysts have been studied over the past few years. However, even the best catalytic system reported could only get unsatisfied performance (such as the selectivity and production rate of NH3) due to the inertness of N2. The lithium-mediated N2 reduction reaction (Li-eN2RR) has been found to be a promising route to promote electrochemical NH3 synthesis. In this regard, a group of researchers has summarized the reaction mechanisms, the catalysts developed, and the electrolytes involved based on the most recent research progress of Li-eN2RR. They also point out the challenges and possible resolving strategies in the Li-eN2RR. This could provide a panoramic view of the related field and facilitate the development of Li-eN2RR for green NH3 production. Sun et al. published their review on April 05 2023 in Industrial Chemistry & Materials.
“The electrocatalytic reduction of N2 for the production of NH3 has been the subject of extensive research, which has been comprehensively reviewed by numerous scholars with expertise in the field,” said corresponding author Zhenyu Sun, a professor at Beijing University of Chemical Technology. “These reviews provide detailed insights into the catalytic performance and mechanisms involved, which can be of great assistance to researchers. However, the NH3 production rate is still low, far behind the requirement of industrial application. The lithium-mediated N2 reduction reaction (Li-eN2RR) holds great potential for the production of NH3 under ambient conditions. Therefore, we provide this comprehensive overview to summarize the recent progress of Li-eN2RR. This review demonstrates the basic aspects of Li-eN2RR including the common composition of electrolytes, suppression of hydrogen evolution, reaction mechanism, the reported electrocatalysts, and the challenges and prospects, which can be helpful to new individuals in this field as well as serve as a valuable resource for researchers, policymakers, and industry professionals alike.”
The rate-determining step in the synthesis of NH3 is often the adsorption and activation of N2. However, due to the inertness of N2, it is extremely hard to break the N≡N triple bond. In the Li-eN2RR process, Li can be used as a mediator to fix N2 as Li3N, which subsequently converts to NH3. “There have been different viewpoints on the reaction mechanism of Li-eN2RR. We provide detailed analysis of the reported mechanisms.” Sun said. Three different mechanisms, including chemical N2 splitting and chemical protonation, N2 activation and protonation through an associative mechanism, and chemical N2 splitting and electrochemical protonation were introduced with their respective reaction steps. The section about the reaction mechanisms of Li-eN2RR demonstrates the different routes of N2 activation and hydrogenation to NH3 production. “Through the different mechanisms, we can have a comprehensive understanding of Li-eN2RR, which can guide the catalytic system design.”
The rational design of electrocatalysts is crucial for Li-eN2RR. There have been some strategies for the engineering of the electrodes to get enhanced performance. “The electrocatalysts together with their design strategies were categorized based on the metal species involved,” Sun said. “Different kinds of electrocatalysts including noble metal catalysts such as Ru, Ag, Au; nonprecious metal catalysts such as copper-based materials, molybdenum, lithium-liquid alloy-salt, stainless steel cloth; and non-metal catalysts such as carbon-based materials were comprehensively overviewed. It was discussed in detail about their performance and the catalytic active sites in Li-eN2RR, which may enlighten the design of the future catalysts towards efficient NH3 production.”
Another important part of Li-eN2RR is the electrolytes. According to Zhenyu Sun, more attention should be given to the study of electrolytes in electrocatalytic N2 reduction considering the significance of electrolytes for the reaction and for N2 dissolution. Some Li-containing electrolytes have been developed for Li-eN2RR, yet more efforts still need to be devoted to further improving the NH3 yield. This requires the synergistic work between the electrolytes and the electrocatalysts as well as the study of their interface.
“The primary objective of this review is to provide readers with a clear understanding of the current research progress of Li-eN2RR, which is still in its early stage yet promising for electrocatalytic NH3 production. We also highlight the challenges and propose strategies to overcome them. We hope it is helpful to promote the development of Li-eN2RR towards green NH3 production,” Sun said.
Industrial Chemistry & Materials is a peer-reviewed interdisciplinary academic journal published by Royal Society of Chemistry (RSC) with APCs currently waived. Icm publishes significant innovative research and major technological breakthroughs in all aspects of industrial chemistry and materials, especially the important innovation of the low-carbon chemical industry, energy, and functional materials.
END
[Attachments] See images for this press release:
ELSE PRESS RELEASES FROM THIS DATE:
2023-04-24
In the early 1990s, scientists who were studying the development of a roundworm identified a small RNA molecule that regulated the expression of specific genes. This marked the discovery of microRNAs (miRNAs), which are now known to be present across all forms of life. As it turns out, these molecules play essential roles in many biological processes.
A few years later, researchers realized that diseases could dysregulate the expression of miRNAs, highlighting their potential as biomarkers. In fact, abnormal miRNA expression is a hallmark of all tumor-related diseases. Thus, miRNA detection techniques ...
2023-04-24
Brain tumors located in regions that control speech, vision and motor function present additional challenges to neurosurgeons, as damaging the surrounding tissue can cause severe loss of those abilities.. Because of this, these regions are known as “eloquent brain areas” and require special attention and approaches to limit damage and deficits.
The University of Cincinnati’s Paolo Palmisciano, MD, was part of a research team that examined how well a minimally invasive approach worked to limit vision and hearing loss in patients following brain tumor surgery.
The research was published in the journal Brain Sciences, and the ...
2023-04-24
The report, “Wrestling with Social and Behavioral Genomics: Risks, Potential Benefits, and Ethical Responsibility,” produced by The Hastings Center, a bioethics institute, provides direction for research and communications in this area of study with both significant social risks and potential benefits. It is accompanied by an article that describes a fledgling effort to integrate community perspectives on the ethics of this research.
A webinar to launch the consensus report will take place today at 3 PM EST. Register here.
Research on genetic variants and human social and behavioral characteristics, or phenotypes, including anxiety, subjective well-being, ...
2023-04-24
The objective of this study is to identify these loci and decipher the polygenic architecture of malic acid content in tomato fruit. The authors carried out a GWAS using six milestone models with two-environment repeats. A series of associated SNP variations were identified from GWAS, and 15 high-confidence annotated genes were obtained based on the lead SNPs and the malic acid accumulation. The optimal allelic combination of the 15 loci was presented for tastier tomato. ...
2023-04-24
A severe windstorm that battered the UK more than a century ago produced some of the strongest winds[OS1] that Britain has ever seen, a team of scientists have found after recovering old weather records.
Old weather measurements, first recorded on paper after Storm Ulysses hit the UK in February 1903, have shed new light on what was one of the most severe storms to have hit the British Isles.
By turning hand-written weather data into digital records, the research team has laid the way to better understand other historical storms, ...
2023-04-24
The steady decline in cultivable land owing to the rapidly increasing global population has necessitated the use of efficient plant breeding methods that could be used to improve agricultural yields. However, in addition to genetic methods, we need approaches to control and improve complex crop traits. To this end, plant scientists make use of various cutting-edge imaging techniques that quantify crop traits (height, leaf shape, leaf color, etc.). Traditional imaging methods, however, are tedious, destructive, and non-sustainable. ...
2023-04-24
Lehigh University materials science and engineering (MSE) professor Masashi Watanabe is the 2023 recipient of the Microanalysis Society Presidential Science Award, which recognizes a senior scientist for “outstanding technical contributions to the field of microanalysis over a sustained period of time.”
Watanabe is a Fellow of the Microanalysis Society and a former MAS president. The career achievement honor highlights his work in advancing quantitative analysis in scanning transmission ...
2023-04-24
WASHINGTON, April 24, 2023 – Superconductors can conduct electricity without any resistance or power loss, and they can effortlessly cause magnets to levitate above them. These properties would make superconductors useful for high-speed trains or long-distance power transmission, except for one glaring problem: superconductors only work at low temperatures, more than a hundred degrees below zero.
This one requirement makes building a hyperefficient electrical grid or high-speed rail network very expensive. Unless, that is, a superconductor network could accomplish ...
2023-04-24
HIGHLIGHTS
SARS-CoV-2 may spread through contaminated shipping containers
How long Omicron variants persist on shipping materials may be influenced by temperature, humidity and material
Researchers measured the viability of BA.1 and BA.5 Omicron variants on 4 shipping materials
The virus was most stable, and most likely to spread, at the lowest temperature.
Washington, DC – The virus that causes COVID-19 spreads through droplets and small particles, but contaminated surfaces of shipping materials ...
2023-04-24
In a first-of-its-kind effort, social media researchers from Drexel University, Vanderbilt University, Georgia Institute of Technology and Boston University are turning to young social media users to help build a machine learning program that can spot unwanted sexual advances on Instagram. Trained on data from more than 5 million direct messages — annotated and contributed by 150 adolescents who had experienced conversations that made them feel sexually uncomfortable or unsafe — the technology can quickly and accurately flag risky DMs.
The project, which was recently published by the Association for Computing Machinery in its Proceedings of the ACM on Human-Computer Interaction, ...
LAST 30 PRESS RELEASES:
[Press-News.org] A panoramic view on lithium-mediated electrochemical dinitrogen reduction reaction