(Press-News.org) Glioblastoma (GBM) is the most aggressive and lethal form of brain tumor. Despite treatment, GBM recurrence is inevitable and tends to occur outside surgical margins or in locations remote to the primary tumor, highlighting the central role played by tumor infiltration in this malicious disease.
Little is known about the underlying molecular mechanisms driving GBM infiltration, but in a new study published in the journal Nature, researchers at Baylor College of Medicine working with animal models reveal a novel process by which neurons in locations remote to the primary tumor provoke expression of genes from gliomblastoma that subsequently drive tumor infiltration.
“Previous studies have shown associations between the presence of GBM and increased neuronal activity in surrounding brain regions, which can promote tumor progression,” said first author Dr. Emmet Huang-Hobbs in Dr. Benjamin Deneen’s lab.
To study how neurons stimulate GBM infiltration, the researchers first determined which neuronal populations promoted glioma intrusion. They hypothesized that callosal projection neurons (CPNs) localized in the cortical hemisphere contralateral to the primary tumor contributed to this phenomenon. CPNs extend across the brain along the corpus callosum, a strip of white matter that connects the left and right cerebral hemispheres.
“Severing the corpus callosum eliminated the neuronal activity-dependent acceleration of GBM infiltration that was observed with the intact control, supporting that an intact corpus callosum is necessary to promote glioma progression and implicating CPNs’ long-range projections in remotely driving GBM infiltration,” Huang said.
“The findings suggest that GBMs receive neuronal inputs from a host of brain regions, implying that exposure to a diverse range of neuroactive compounds can potentially influence tumor growth. It’s now clear that tumor-neuron interactions are more widespread than previously thought,” said Deneen, professor and Dr. Russell J. and Marian K. Blattner Chair in the Department of Neurosurgery, director of the Center for Cancer Neuroscience and a member of the Dan L Duncan Comprehensive Cancer Center at Baylor. He also is the corresponding author of the work.
“In collaboration with the labs of Baylor researchers Dr. Jeffrey L. Noebels and Dr. Ganesh Rao, we found evidence suggesting that GBM and CPNs have a two-way conversation,” Huang said. “CPNs promote tumor infiltration, and the tumor affects neuronal connections or synapses. The tumor remodels local neuronal synapses and makes direct synaptic connections, raising the possibility that it alters brain circuit activity in these regions that are distant from the primary tumor.”
Further analyses showed mechanistic details underlying these observations. The researchers found that the infiltrating tumor population is enriched for axon guidance genes, including SEMA4F, which they identified as an essential factor for glioma progression and neuronal activity-dependent infiltration. Interestingly, SEMA4F also promotes neuronal hyperactivity.
“Taken all together, we propose a model in which neurons prompt the expression of genes from glioma tumors that subsequently drive infiltration and their own synaptic activity,” Huang said. “A better understanding of the two-way conversation between GBM and CPNs is an important step toward improved brain tumor treatments.”
Other contributors to his work include Yi-Ting Cheng, Yeunjung Ko, Estefania Luna-Figueroa, Brittney Lozzi, Kathryn R. Taylor, Malcolm McDonald, Peihao He, Hsiao-Chi Chen, Yuhui Yang, Ehson Maleki, Zhung-Fu Lee, Sanjana Murali, Michael R. Williamson, Dongjoo Choi, Rachel Curry, James Bayley, Junsung Woo, Ali Jalali, Michelle Monje and Akdes Serin Harmanci. The authors are affiliated with Baylor College of Medicine or Stanford University.
This work was supported by U.S. National Institutes of Health (NIH) (grants NS124093, NS071153 and CA223388), the National Cancer Institute–Cancer Target Discovery and Development (grants U01-CA217842, F31-CA243382, 1F31CA265156 and T32-5T32HL092332-19), and by an NIH Director’s Pioneer Award (DP1NS111132). Further support was provided by the David and Eula Wintermann Foundation, NIH shared instrument grants (S10OD023469, S10OD025240 and P30EY002520), P30 Cancer Center Support Grant NCI-CA125123 and the Eunice Kennedy Shriver National Institute of Child Health & Human Development of NIH under award P50HD103555.
###
END
Long-range neuronal connections drive glioblastoma invasion
2023-06-28
ELSE PRESS RELEASES FROM THIS DATE:
Largest-ever atlas of normal breast cells brings unprecedented insights into mammary biology
2023-06-28
HOUSTON ― A new study led by researchers at The University of Texas MD Anderson Cancer, University of California, Irvine and Baylor College of Medicine has created the world’s largest and most comprehensive map of normal breast tissue, providing an unprecedented understanding of mammary biology that may help identify therapeutic targets for diseases such as breast cancer.
The Human Breast Cell Atlas, published today in Nature, used single-cell and spatial genomic methods to profile more than 714,000 cells from 126 women. The breast atlas highlights 12 major cell types ...
Research breakthrough could be significant for quantum computing future
2023-06-28
Scientists using one of the world’s most powerful quantum microscopes have made a discovery that could have significant consequences for the future of computing.
Researchers at the Macroscopic Quantum Matter Group laboratory in University College Cork (UCC) have discovered a spatially modulating superconducting state in a new and unusual superconductor Uranium Ditelluride (UTe2). This new superconductor may provide a solution to one of quantum computing’s greatest challenges.
Their finding has been published in the prestigious journal Nature.
Lead author Joe Carroll, a PhD researcher working with UCC Prof. of Quantum Physics Séamus Davis, explains the subject of the paper.
“Superconductors ...
Researchers uncover new CRISPR-like system in animals that can edit the human genome
2023-06-28
A team of researchers led by Feng Zhang at the Broad Institute of MIT and Harvard and the McGovern Institute for Brain Research at MIT has uncovered the first programmable RNA-guided system in eukaryotes — organisms that include fungi, plants, and animals.
In a study in Nature, the team describes how the system is based on a protein called Fanzor. They showed that Fanzor proteins use RNA as a guide to target DNA precisely, and that Fanzors can be reprogrammed to edit the genome of human cells. The compact Fanzor systems have the potential to be more easily delivered to cells and tissues as therapeutics than CRISPR/Cas systems, ...
Starlight and the first black holes: researchers detect the host galaxies of quasars in the early universe
2023-06-28
New images from the James Webb Space Telescope have revealed, for the first time, starlight from two massive galaxies hosting actively growing black holes – quasars – seen less than a billion years after the Big Bang. A new study in Nature this week finds the black holes have masses close to a billion times that of the Sun, and the host galaxy masses are almost one hundred times larger, a ratio similar to what is found in the more recent universe. A powerful combination of the Subaru Telescope and the JWST has paved a new path to study the distant universe.
The existence of such massive black holes in the distant universe has created more questions ...
Life after death: Hawaiʻi astronomers find a planet that shouldn’t exist
2023-06-28
Maunakea, Hawaiʻi - When our Sun reaches the end of its life, it will expand to 100 times its current size, enveloping the Earth. Many planets in other solar systems face a similar doom as their host stars grow old. But not all hope is lost, as astronomers from the University of Hawaiʻi Institute for Astronomy (UH IfA) have made the remarkable discovery of a planet’s survival after what should have been certain demise at the hands of its sun.
The Jupiter-like planet 8 UMi b, officially named Halla, ...
Genetic variant linked with faster progression of multiple sclerosis
2023-06-28
Contact: Bess Connolly, 203-432-1324 or elizabeth.connolly@yale.edu
Embargoed For Release: 11 A.M. ET June 28, 2023
Genetic variant linked with faster progression of multiple sclerosis
New Haven, Conn. — A study of more than 22,000 people with multiple sclerosis (MS) has for the first time identified a genetic variant associated with faster progression of the disease, an accumulation of disability that can rob patients of their mobility and independence over time.
Multiple sclerosis begins as an autoimmune disease where the immune system attacks the brain and the spinal cord, resulting in symptom flares, called relapses, as well as longer-term degeneration known ...
High-speed proton transaction
2023-06-28
How did life begin on Earth? Experts have long been fascinated by this question and over the years have come up with a variety of theories. One hypothesis is that the origin of life can be traced back to warm little ponds which are thought to have existed on Earth four billion years ago. The water in these ponds probably contained urea molecules; these were exposed to ultraviolet radiation from the sun, which at that time would have penetrated to the surface of the earth largely unimpeded. This high-energy radiation was able to convert ...
The complex role of pyroptosis in lung cancer: a Chinese Medical Journal Pulmonary and Critical Care Medicine Review
2023-06-28
Lung cancer, one of the most aggressive forms of cancer, continues to be a leading cause of death worldwide. Although several new therapies have been developed for this disease, it has a poor prognosis in its advanced stages. A primary reason underlying this poor response to treatment is the formation of a tumor microenvironment (TME)— the environment that surrounds a tumor and plays a crucial role in its growth. To develop approaches that can overcome treatment resistance during the advanced stages of this cancer, we need to understand ...
The American Association for Anatomy calls for ethical treatment and justice for human body donors
2023-06-28
ROCKVILLE, MD—JUNE 15, 2023 – In response to the allegations of illicit buying and selling of stolen body parts from Harvard Medical School's body donation program, the American Association for Anatomy (AAA) stands united in strong condemnation of the commercialization of human body donors and any action that violates donor ethics and trust. Our heartfelt support goes out to the affected families.
Any act that violates the principles of respect and dignity owed to every individual, in life or death, undermines the sanctity of ...
Scientists design a nanoparticle that may improve mRNA cancer vaccines
2023-06-28
FOR IMMEDIATE RELEASE
Johns Hopkins Medicine scientists say they have developed a nanoparticle — an extremely tiny biodegradable container — that has the potential to improve the delivery of messenger ribonucleic acid (mRNA)-based vaccines for infectious diseases such as COVID-19, and vaccines for treating non-infectious diseases including cancer.
Results of tests in mice, reported June 20 in the Proceedings of the National Academy of Sciences, show that the degradable, polymer-based nanoparticle carrying an mRNA-based vaccine, when injected into the ...