(Press-News.org) New Haven, Conn. — Cancer cells with extra chromosomes depend on those chromosomes for tumor growth, a new Yale study reveals, and eliminating them prevents the cells from forming tumors. The findings, said the researchers, suggest that selectively targeting extra chromosomes may offer a new route for treating cancer.
The study was published July 6 in the journal Science.
Human cells typically have 23 pairs of chromosomes; extra chromosomes are an anomaly known as aneuploidy.
“If you look at normal skin or normal lung tissue, for example, 99.9% of the cells will have the right number of chromosomes,” said Jason Sheltzer, assistant professor of surgery at Yale School of Medicine and senior author of the study. “But we’ve known for over 100 years that nearly all cancers are aneuploid.”
However, it was unclear what role extra chromosomes played in cancer — for instance, whether they cause cancer or are caused by it.
“For a long time, we could observe aneuploidy but not manipulate it. We just didn’t have the right tools,” said Sheltzer, who is also a researcher at Yale Cancer Center. “But in this study, we used the gene-engineering technique CRISPR to develop a new approach to eliminate entire chromosomes from cancer cells, which is an important technical advance. Being able to manipulate aneuploid chromosomes in this way will lead to a greater understanding of how they function.”
The study was co-led by former lab members Vishruth Girish, now an M.D.-Ph.D. student at Johns Hopkins School of Medicine, and Asad Lakhani, now a postdoctoral researcher at Cold Spring Harbor Laboratory.
Using their newly developed approach — which they dubbed Restoring Disomy in Aneuploid cells using CRISPR Targeting, or ReDACT — the researchers targeted aneuploidy in melanoma, gastric cancer, and ovarian cell lines. Specifically, they removed an aberrant third copy of the long portion — also known as the “q arm” — of chromosome 1, which is found in several types of cancer, is linked to disease progression, and occurs early in cancer development.
“When we eliminated aneuploidy from the genomes of these cancer cells, it compromised the malignant potential of those cells and they lost their ability to form tumors,” said Sheltzer.
Based on this finding, the researchers proposed cancer cells may have an “aneuploidy addiction” — a name referencing earlier research that discovered that eliminating oncogenes, which can turn a cell into a cancer cell, disrupts cancers’ tumor-forming abilities. This finding led to a model of cancer growth called “oncogene addiction.”
When investigating how an extra copy of chromosome 1q might promote cancer, the researchers found that multiple genes stimulated cancer cell growth when they were overrepresented — because they were encoded on three chromosomes instead of the typical two.
This overexpression of certain genes also pointed the researchers to a vulnerability that might be exploited to target cancers with aneuploidy.
Previous research has shown that a gene encoded on chromosome 1, known as UCK2, is required to activate certain drugs. In the new study, Sheltzer and his colleagues found that cells with an extra copy of chromosome 1 were more sensitive to those drugs than were cells with just two copies, because of the overexpression of UCK2.
Further, they observed that this sensitivity meant that the drugs could redirect cellular evolution away from aneuploidy, allowing for a cell population with normal chromosome numbers and, therefore, less potential to become cancerous. When researchers created a mixture with 20% aneuploid cells and 80% normal cells, aneuploid cells took over: after nine days, they made up 75% of the mixture. But when the researchers exposed the 20% aneuploid mixture to one of the UCK2-dependent drugs, the aneuploid cells comprised just 4% of the mix nine days later.
“This told us that aneuploidy can potentially function as a therapeutic target for cancer,” said Sheltzer. “Almost all cancers are aneuploid, so if you have some way of selectively targeting those aneuploid cells, that could, theoretically, be a good way to target cancer while having minimal effect on normal, non-cancerous tissue.”
More research needs to be done before this approach can be tested in a clinical trial. But Sheltzer aims to move this work into animal models, evaluate additional drugs and other aneuploidies, and team up with pharmaceutical companies to advance toward clinical trials.
“We’re very interested in clinical translation,” said Sheltzer. “So we’re thinking about how to expand our discoveries in a therapeutic direction.”
# # #
END
While mathematics is a fundamental skill crucial to daily life, U.S. parents today see math education as boring, outdated, and disconnected from the real world. (1) At the national level, short and long-term achievement trends paint a disconcerting picture of the need for innovative math education strategies:
Math scores among eighth graders dropped in 2022, to the lowest score since 20031
Math scores declined for students regardless of racial and ethnic group, gender, parental education, or disability status1
The COVID-19 pandemic exacerbated declines in math achievement; the median school district lost about ...
UNIVERSITY PARK, Pa. — Mobile phone data are increasingly used in public health management and disease outbreak response, as demonstrated during the COVID-19 pandemic when location data were used as a proxy for human movement and contacts and informed exposure notification apps. However, a new study led by researchers at Penn State revealed that phone data may not accurately reflect under-resourced or particularly vulnerable populations, who are often underrepresented in other data as well.
If this bias is not acknowledged or complemented with additional ...
Hand tremors and slowed movements are two of the most widely recognized hallmarks of Parkinson’s disease, and for many sufferers the first indication that something is amiss. But by the time these symptoms manifest, those patients have already lost 50–80 percent of their dopamine neurons—a mass die-off that causes the neurodegenerative disease. Malfunctions in dopamine-dependent areas of the brain are responsible for many of the symptoms, which differ from person to person in an unpredictable way.
A diagnosis at an early age, typically before age 50, can stave off the most severe symptoms for years; when the disease is identified later, its trajectory is often swift ...
For women over the age of 65 who have never had a high-risk human papillomavirus (HPV) test, a “catch up” HPV screening intervention may improve cervical cancer prevention by detecting more cervical pre-cancer lesions as compared to women not offered screening. That is the conclusion of a new study publishing July 6th in the open access journal PLOS Medicine by Mette Tranberg, University Research Clinic for Cancer Screening, Randers Regional Hospital, Denmark, and colleagues.
High-risk human papillomavirus (HPV) test is replacing cytology as the primary cervical cancer screening test in most countries, but many women over 65 years have never had an HPV ...
How temperate and boreal trees’ leaves respond to climate change remains uncertain. Now, a new study of northern forests reports that while early-season climate warming – that occurring before the summer solstice – tends to be associated with earlier autumn leaf senescence, late-season warming (after the summer solstice) has the opposite impact, delaying onset of leaf senescence in fall. “Improved models of plant development and growth under climate change will need to incorporate the reversal of warming effects after the summer solstice,” write Constantin Zohner and colleagues, authors of the study. Climate change ...
In two separate studies, researchers present novel methods that enable the fabrication of high-performance perovskite-silicon tandem solar cells with power conversion efficiencies exceeding 30%. Silicon solar cells – the most commonly deployed photovoltaic (PV) technology – are rapidly approaching their theoretical power conversion efficiency (PCE) limit of 29%. One way to increase the efficiency of a solar cell is to optimize the spectrum of sunlight for conversion into energy. This can be done by stacking two or more interconnected photoactive materials into a singular device, improving ...
A new study helps explain why rates of species exchange are at least twice as high from west to east than in the opposite direction across Wallace’s Line. The study included an analysis of more than 20,000 species belonging to all 227 families of terrestrial vertebrates present in the Indo-Australian archipelago. As tectonic plates merge, once disparate continents can connect and create new opportunities for biotic exchange. Species movement across newly connected continents millions of years ago continues to shape assemblages of flora and fauna today. One of the most well-known ...
A new study with direct implications for one of the most important unresolved questions in physics – the imbalance of matter and antimatter in our universe – reports “the most precise measurement yet” of the size of the electron’s permanent electric dipole moment. The imbalance between matter and antimatter in the Universe can be explained via the breaking of charge parity symmetry. The standard model (SM) of particle physics predicts a slight breaking of this symmetry, but it is insufficient to explain the imbalance actually observed. Many extensions to the standard ...
Incorporating animal welfare into policymaking may improve policy and practice, according to Rutgers research.
The article, published in Science, notes that animal welfare rarely is considered during policymaking, explains why current tools make it difficult to incorporate the well-being of animals into public policy and identifies methods for remedying these issues.
“Animal welfare is often ignored in policymaking, despite its relevance across many domains ranging from food systems to biomedical research to climate policy,” said Mark ...
Ask anyone what first springs to mind when they think of Australia and they’ll most likely say a kangaroo; the marsupial is ingrained in our national identity. But have you ever wondered why kangaroos never ventured beyond our shores?
A major study led by biologists at The Australian National University (ANU) and ETH Zurich in Switzerland provides a new explanation for why you won’t find kangaroos, koalas and other Aussie marsupials in Indonesia, but you will find many groups of animals that originated in Asia, such as goannas, ...