PRESS-NEWS.org - Press Release Distribution
PRESS RELEASES DISTRIBUTION

Damon Runyon Cancer Research Foundation awards $3.9 million to exceptional early-career scientists

2023-08-16
(Press-News.org) The Damon Runyon Cancer Research Foundation has named 13 new Damon Runyon Fellows, exceptional postdoctoral scientists conducting basic and translational cancer research in the laboratories of leading senior investigators. This prestigious Fellowship encourages the nation’s most promising young scientists to pursue careers in cancer research by providing them with independent funding to investigate cancer causes, mechanisms, therapies, and prevention. In July 2023, the Board of Directors announced a 15% increase in the Fellowship stipend, bringing the total to $300,000 over the award’s four-year term.

“Over the past three decades, the rate of cancer mortality in the U.S. has dropped by a third, saving an estimated 3.8 million lives. This is because of earlier diagnoses, a better fundamental understanding of the genetic changes that take place in a cancer cell, and personalized treatment options like targeted therapy and immunotherapy. Damon Runyon scientists have been a part of each and every one of these advances,” said Yung S. Lie, PhD, President and CEO of Damon Runyon. “We fund the best young talent—risk takers and innovators. I am confident that because of the research being done by our scientists, this trend will continue, such that ultimately cancer will be a fully treatable disease. My optimism is shared by the cancer research community.”

May 2023 Damon Runyon Fellows

Gabriel Cavin-Meza, PhD [Merck Fellow], with his sponsor Rebecca W. Heald, PhD, at the University of California, Berkeley

Proper cell division, including equal partitioning of DNA into two “daughter” cells, is critical for cell viability. However, many cancers continue to divide despite having atypical numbers of chromosomes and can even contain additional copies of the entire genome (polyploidy). Understanding how large increases in chromosome number affect cell division machinery has been limited by the methods used to generate polyploid cells. Serendipitously, stable polyploidy has arisen in multiple organisms, such as plants, fish, and amphibians. By utilizing the natural polyploidy found in Xenopus clawed frogs (ranging from two copies to twelve copies of the genome), Dr. Cavin-Meza will explore the mechanisms that lead to increased but stable genome size. He will also analyze the proteome across Xenopus species to reveal how proteins have adapted to promote stable polyploidy over time, giving valuable insight into how stable polyploidy could arise in cancers. Dr. Cavin-Meza received his PhD from Northwestern University, Evanston and received his BS from the University of California, San Diego.

Alon Chappleboim, PhD, with his sponsor Sharad Ramanathan, PhD, at Harvard University, Cambridge

Dr. Chappleboim studies how cells communicate during a developmental process called somitogenesis, which drives the formation of repeated structures such as the spinal vertebrae. The signals that guide cell communication during this process can get misinterpreted by cancer cells, resulting in uncontrolled growth. These pathways are implicated in numerous cancer types but are notably associated with colorectal, ovarian, and breast cancer. Using cutting-edge techniques in human stem cells and 3D-models called organoids, along with the tools of computational biology, Dr. Chappleboim aims to deliberately perturb and examine these signaling pathways to gain a comprehensive understanding of how they function. Dr. Chappleboim received his PhD, MS, and BS from Hebrew University of Jerusalem, Jerusalem.

Wei (Will) Chen, PhD, with his sponsor David Baker, PhD, at University of Washington, Seattle

For gene activation, transcription factors (TFs) must bind to enhancers, often with multiple TFs binding at the same site, and recruit other proteins known as cofactors and polymerases. The interactions between TFs and cofactors are usually nonspecific, meaning the cofactors are interchangeable, which limits our understanding of precise gene activation. Dr. Chen will design new proteins that bind the cofactors with high specificity to clarify the contribution of each cofactor. This research will not only provide new insights into the mechanism of gene regulation but also provide new platforms to modulate gene expression with high precision. Dr. Chen received his PhD from the University of Washington, Seattle, his MS from Cornell University, Ithaca and his BS from Shandong University, Jinan.

Anders B. Dohlman, PhD, with his sponsor Matthew L. Meyerson, MD, PhD, at Dana-Farber Cancer Institute, Boston

In many cancer types, microbiota have emerged as an influential component of the tumor environment. Dr. Dohlman studies Fusobacterium nucleatum, a bacterial species that colonizes around half of colorectal tumors. The reasons for F. nucleatum’s preferential colonization of these tissues are poorly understood, and investigating this phenomenon could lead to improvements in cancer diagnosis and treatment. To this end, Dr. Dohlman is using computational methods to study strains of cancer-associated F. nucleatum, searching for genomic features that promote colonization of colorectal cancers. In parallel, he is analyzing the genomes of colorectal tumors to identify genetic changes that in turn promote F. nucleatum colonization. Dr. Dohlman received his PhD from Duke University, Durham and his BA from Wesleyan University, Middletown.

Isabella Fraschilla, PhD [Merck Fellow], with her sponsor Tyler E. Jacks, PhD, at Massachusetts Institute of Technology – MIT, Cambridge

Pancreatic cancer remains unresponsive to current chemotherapy and immunotherapy treatments. However, with the recent development of mRNA vaccines and drugs that target cancer cell mutations, there is hope for a new generation of immune-based therapies. The ability of adaptive immune cells, called cytotoxic T cells, to kill cancer cells is central to anti-tumor immunity. Using mouse models of human pancreatic cancer, Dr. Fraschilla plans to identify the flags presented by cancer cells that enable T cells to recognize them as foreign and kill them. One category of flags that label cancer cells as foreign may be proteins from bacteria that prefer to replicate within the tumor environment. This investigation of cancer cell targets will inform the development of future vaccines to treat cancer and prevent tumor regrowth or metastases. Dr. Fraschilla received her PhD from Harvard University, Cambridge and her BS from Emory University, Atlanta.

Nicole Marie Hoitsma, PhD [HHMI Fellow], with her sponsor Karolin Luger, PhD, at University of Colorado, Boulder

Human cells have complex mechanisms to repair DNA damage, such as that caused by exposure to sunlight or chemical substances. If DNA is not properly repaired, however, it can lead to cancer. In fact, faulty DNA repair has been associated with the initiation and progression of all types of cancer and is often targeted in cancer treatment to stop uncontrolled cell growth. A better understanding of how cells naturally defend against DNA damage will allow for the development of better drugs to treat cancer. Dr. Hoitsma aims to investigate specialized proteins, known as chromatin remodelers, that make damaged DNA accessible for repair. This research will provide insight for the development of novel therapeutic strategies to target these critical pathways. Dr. Hoitsma received her PhD from University of Kansas Medical Center, Kansas City and her BS from South Dakota State University, Brookings.

Lucia Ichino, PhD [HHMI Fellow], with her sponsor Joanna K. Wysocka, PhD, at Stanford University School of Medicine, Stanford

Epithelial to Mesenchymal Transition (EMT) is a crucial biological process that occurs during early development. It allows epithelial cells, which line the inner and outer surfaces of the body, to undergo a profound transformation in cellular identity and migrate and populate the embryo. Unfortunately, numerous cancer types exploit this mechanism, allowing cancer cells to detach from the tissue of origin and disseminate throughout the body, significantly worsening patients’ prognoses. Dr. Ichino is studying the process of developmental EMT with the goal of discovering novel ways to interfere with it in the context of cancer progression. Dr. Ichino’s research takes advantage of a lab-grown system that mimics the EMT and migration of neural cells. Using this system, she plans to study how EMT-promoting transcription factors orchestrate this global change in cellular identity, and how genetic variations can influence this process. Dr. Ichino received her PhD from University of California, Los Angeles and her MS and BS from San Raffaele University, Milan.

Grant Austin King, PhD [HHMI Fellow], with his sponsor Harmit S. Malik, PhD, at Fred Hutchinson Cancer Center, Seattle

Like changes in key genes that control the cell cycle, changes to chromosomes can result in abnormal cell function and sometimes even cancer. Recently, a new type of genetic change has been linked to diverse cancers: the formation of circular DNA molecules from chromosomes. These molecules, known as extrachromosomal DNA or ecDNA, are dangerous because they do not follow the same rules of inheritance as normal chromosomes. Understanding the behavior of ecDNA within cells may uncover strategies to eliminate ecDNA and restore cellular health. Using a model ecDNA in budding yeast, Dr. King will identify and characterize pathways that either limit or enhance ecDNA propagation. He will then determine whether these pathways play a consistent role in human cancer cells, with the goal of identifying novel therapeutic vulnerabilities in treatment-resistant ecDNA-driven cancers. Dr. King received his PhD from the University of California, Berkeley and his BA from Columbia University, New York.

Fanglue Peng, PhD [Connie and Bob Lurie Fellow], with his sponsor Jason G. Cyster, PhD, at the University of California, San Francisco

Accumulating evidence shows that specialized structures of white blood cells (lymphocytes), named tertiary lymphoid organs (TLOs), can form inside tumors and play a crucial role in fighting cancer progression. Unlocking the formation and functions of TLOs holds great promise for advancing cancer immunotherapy, but studying TLOs remains challenging due to the substantial disparities between humans and animal models. To address this, Dr. Peng will leverage single-cell sequencing data and high-throughput screening methods to investigate a key initiator of TLO formation in human tumors. He further plans to develop innovative genetic models that enable the study of TLOs in a human-specific context within living organisms. By unraveling the intricacies of TLO biology, Dr. Peng aims to uncover novel therapies that can augment cancer immunotherapy and enhance treatment outcomes across various cancer types.  Dr. Peng received his PhD from Baylor College of Medicine, Houston and his BS from Zhejiang University, Hangzhou, Zhejiang.

Wendy Xueyi Wang, PhD, with her sponsors Xiao Wang, PhD (Broad Institute), and Jia Liu, PhD (Harvard University), at the Broad Institute, Cambridge

Dr. Wang is investigating how brain cell activity (e.g., neurons “firing”) and the intracellular signaling pathways triggered by this activity influence glioma and pediatric brain cancer development. Using high-throughput approaches to map neuronal activity, gene expression, and cell structure at the single-cell level, Dr. Wang aims to understand the normal progression of these activity-dependent signaling pathways in the healthy brain, and how these mechanisms are hijacked during cancer progression. This work may reveal new molecular and cellular targets and lead to the development of novel therapeutic strategies. Dr. Wang received her PhD and MS from the University of Toronto, Toronto and her BS from the University of Western Ontario, London, Ontario.

Juner Zhang, PhD, with his sponsor Tom W. Muir, PhD, at Princeton University, Princeton

In cells, DNA wraps around a protein complex consisting of proteins called histones. Chemical modifications to histones can affect gene expression, which is key to activating or suppressing cancer progression. Histone monoaminylation, in which an amine (e.g., serotonin, dopamine, or histamine) attaches itself to a histone, is a newfound type of epigenetic modification whose role remains elusive in these processes. Dr. Zhang is using chemical biology tools to study the functions of these modifications as well as their effects on other adjacent, pre-existing cancer-associated modifications. This research may establish a foundation for how this epigenetic modification regulates gene expression and offer insight into the role of amines in the progression of cancer and human neurodegenerative disorders. Dr. Zhang received his PhD from the California Institute of Technology, Pasadena and his BS from Tsinghua University, Beijing.

Pu Zheng, PhD [Fayez Sarofim Fellow], with his sponsor Jonathan S. Weissman, PhD, at the Whitehead Institute for Biomedical Research, Cambridge

Dr. Zheng is dedicated to the development of technologies for studying tumor evolution within their native contexts. Understanding the complex processes of cancer growth and progression requires a deep exploration of the dynamic interactions between tumor cells and the tumor microenvironment. “Spatial-omics” technologies are powerful tools that offer direct visualization of cells and their interactions in natural contexts, enabling systematic investigation of these intricate processes. Dr. Zheng aims to develop novel spatial-omics technologies that combine imaging and gene sequencing approaches to uncover the mechanisms underlying the spatially distinguished features of tumor evolution. Dr. Zheng received his PhD from Harvard University, Cambridge and his BS from Peking University, Beijing.

Ronghui Zhu, PhD [Connie and Bob Lurie Fellow], with his sponsors Alexander Marson, MD, PhD (The J. David Gladstone Institutes), and Jonathan K. Pritchard, PhD (Stanford University School of Medicine), at The J. David Gladstone Institutes, San Francisco

Our immune system can help us prevent or slow cancer development. Human CD4+ T cells play critical roles in regulating our immune responses to fight cancer. Upon encountering a pathogen, naïve CD4+ T cells differentiate into different T helper (Th) cells to perform diverse immune-modulatory functions. Variability in this differentiation process is associated with variable responses to cancer immunotherapy. While several genes necessary for differentiation have been identified, researchers lack a comprehensive map and a predictive model of the larger gene regulatory network (GRN) controlling this process. Dr. Zhu plans to combine functional genomics with mathematical modeling to systematically map and model the human CD4+ T cell differentiation GRN and use the GRN model to predict and control the differentiation process. His work promises to provide a quantitative understanding of the CD4+ T cell differentiation process and open up new strategies for safer and more effective cell-based cancer therapy. Dr. Zhu received his PhD from the California Institute of Technology, Pasadena and his BS from Hong Kong University of Science and Technology, Hong Kong.

******

Damon Runyon Cancer Research Foundation 

To accelerate breakthroughs, the Damon Runyon Cancer Research Foundation provides today's best young scientists with funding to pursue innovative research. The Foundation has gained worldwide prominence in cancer research by identifying outstanding researchers and physician-scientists. Thirteen scientists supported by the Foundation have received the Nobel Prize, and others are heads of cancer centers and leaders of renowned research programs. Each of its award programs is extremely competitive, with less than 10% of applications funded. Since our founding in 1946, in partnership with donors across the nation, the Damon Runyon Cancer Research Foundation has invested over $430 million to fund nearly 4,000 scientists. 

100% of all donations to the Foundation are used to support scientific research. Administrative and fundraising costs are paid with revenue from the Damon Runyon Broadway Tickets Service and our endowment. 

For more information visit damonrunyon.org. 

END



ELSE PRESS RELEASES FROM THIS DATE:

Assessing controls on ocean productivity – from space

2023-08-16
Phytoplankton determine how much life the ocean is able to support and play a role in controlling atmospheric carbon dioxide concentrations, thereby regulating our climate. These tiny marine plants depend on sunlight as well as nutrients to thrive – including elements such as iron or nitrogen that can be brought to the ocean surface by currents and upwelling. To understand phytoplankton nutrient limitations in the ocean, scientists typically conduct experiments during research expeditions at sea. However, this approach documents only a tiny fraction of the ocean at a certain point in time. Therefore, an international team of researchers tested if a signal detected by satellites in ...

Medications for chronic diseases affect the body’s ability to regulate body temperature, keep cool

2023-08-16
Medications to treat various chronic diseases may hinder the body’s ability to lose heat and regulate its core temperature to optimal levels. The loss of effective thermoregulation has implications for elderly people receiving treatment for illnesses like cancer, cardiovascular, Parkinson’s disease/dementia and diabetes, particularly during hot weather, according to a review by a team of scientists from various institutions in Singapore. The group, led by Associate Professor Jason Lee from the Human Potential Translational Research Programme at the Yong Loo Lin School of ...

New leaf-tailed gecko from Madagascar is a master of disguise

New leaf-tailed gecko from Madagascar is a master of disguise
2023-08-16
Leaf-tailed geckos are masters of camouflage. Some species have skin flaps around the whole body and head, as well as flattened tails. During the day, they rest head-down on tree trunks with these skin flaps spread out, and blend seamlessly into their surroundings, making them nearly impossible to spot. At night, they awaken to prowl the fine branches of the understory looking for invertebrate prey. “When we first discovered this species in 2000, we already suspected it might be new to science,” says Dr Frank Glaw, curator of herpetology at the Bavarian State Collection of Zoology, lead author on the study. “But ...

MD Anderson research highlights for August 16, 2023

2023-08-16
HOUSTON ― The University of Texas MD Anderson Cancer Center’s Research Highlights showcases the latest breakthroughs in cancer care, research and prevention. These advances are made possible through seamless collaboration between MD Anderson’s world-leading clinicians and scientists, bringing discoveries from the lab to the clinic and back. Recent developments include a novel single-cell sequencing technology that allows for rapid analyses of archived and frozen cells, greater understanding of the ...

Switching ‘spin’ on and off (and up and down) in quantum materials at room temperature

Switching ‘spin’ on and off (and up and down) in quantum materials at room temperature
2023-08-16
Researchers have found a way to control the interaction of light and quantum ‘spin’ in organic semiconductors, that works even at room temperature. Spin is the term for the intrinsic angular momentum of electrons, which is referred to as up or down. Using the up/down spin states of electrons instead of the 0 and 1 in conventional computer logic could transform the way in which computers process information. And sensors based on quantum principles could vastly improve our abilities to measure and study the world around us. An international team of researchers, led by the University of ...

Research finds that molecules in vegetables can help to ease lung infection

Research finds that molecules in vegetables can help to ease lung infection
2023-08-16
Francis Crick Institute press release Under strict embargo: 16:00hrs BST 16 August 2023 Peer reviewed Experimental study Animals Research finds that molecules in vegetables can help to ease lung infection Researchers at the Francis Crick Institute have found that molecules in vegetables like broccoli or cauliflower help to maintain a healthy barrier in the lung and ease infection. The AHR – aryl hydrocarbon receptor – is a protein found at barrier sites like the gut and the lung. Natural molecules in cruciferous vegetables – for example, kale, cauliflower, broccoli, or cabbage – are dietary ...

Collecting clean water from fog

2023-08-16
In countries such as Peru, Bolivia and Chile, it’s not uncommon for people who live in foggy areas to hang up nets to catch droplets of water. The same is true of Morocco and Oman. These droplets then trickle down the mesh and are collected to provide water for drinking, cooking and washing. As much as several hundred litres of water can be harvested daily using a fog net only a few square metres in area. For regions with little rain or spring water, but where fog is a common occurrence, this can be a blessing. One crucial drawback with this method, however, ...

Mental illness following physical assault among children

2023-08-16
About The Study: Children who experienced assault had, on average, a 2 times higher risk of receiving a mental illness diagnosis and were more likely than children who had not experienced assault to present to acute care for mental illness. Early intervention to support mental health of assaulted children is warranted, particularly in the first year following assault.  Authors: Natasha Ruth Saunders, M.D., M.Sc., of the Hospital for Sick Children in Toronto, is the corresponding author.   To ...

Prevalence, factors associated with vaping CBD among adolescents

2023-08-16
About The Study: In this study of 28,000 middle and high school students, the prevalence of vaping cannabidiol (CBD) was high, particularly among e-cigarette users and Hispanic and sexual minority populations. The findings suggest that evidence-based educational campaigns, interventions, and public policy changes are needed to reduce the harmful health outcomes possible with vaping CBD among developing youths.  Authors: Hongying Daisy Dai, Ph.D., of the University of Nebraska Medical Center in Omaha, is the corresponding author.   To access the embargoed study: Visit our For The Media website at this link https://media.jamanetwork.com/ (doi:10.1001/jamanetworkopen.2023.29167) Editor’s ...

Patterns in cancer incidence among people younger than age 50

2023-08-16
About The Study: The incidence rates in the U.S. of early-onset cancer (younger than age 50) increased from 2010 to 2019 in this study of 562,000 patients. Although breast cancer had the highest number of incident cases, gastrointestinal cancers had the fastest-growing incidence rates among all early-onset cancers. These data may be useful for the development of surveillance strategies and funding priorities.  Authors: Daniel Q. Huang, M.B.B.S., M.M.E.D., and Cheng Han Ng, M.B.B.S., of the National University of Singapore, are the corresponding authors.   To access the embargoed study: ...

LAST 30 PRESS RELEASES:

Genome Research publishes a Special Issue on Long-read DNA and RNA Sequencing Applications in Biology and Medicine

Dementia risk prediction: Zero-minute assessment at less than a dollar cost

Children’s Hospital Colorado Heart Institute earns national recognition for excellence in cardiomyopathy care

Trial shows alcohol-mimicking medication can give laryngeal dystonia patients back their voice

Cigarette smoke alters microbiota, aggravates flu severity

Landmark study reveals over 100,000 American youth living with inflammatory bowel disease

Diverse diets of civets in Borneo rainforest allow them to live in same geographical area

Virtual reality could be gamechanger in police-civilian crisis encounters

Recycled pacemakers function as well as new devices, international study suggests

Researchers eliminate the gritty mouth feel: How to make it easier to eat fiber-rich foods

An innovative antibiotic for drug-resistant bacteria

Garden produce grown near Fayetteville works fluorochemical plant contains GenX, other PFAs

CMU-Africa expands digital public infrastructure initiative across the continent

Study calls for city fashion waste shakeup

Scientists develop breakthrough culture system to unlock secrets of skin microbiome

Masseter muscle volume might be a key indicator of sarcopenia risk in older adults

New study unveils key strategies against drug-resistant prostate cancer

Northwestern Medicine, West Health, Meadows Mental Health Policy Institute collaboration to provide easier access to mental health care

New method reveals DNA methylation in ancient tissues, unlocking secrets of human evolution

Researchers develop clinically validated, wearable ultrasound patch for continuous blood pressure monitoring

Chromatwist wins innovate UK smart grant for £0.5M project

Unlocking the secrets of the first quasars: how they defy the laws of physics to grow

Study reveals importance of student-teacher relationships in early childhood education

Do abortion policy changes affect young women’s mental health?

Can sown wildflowers compensate for cities’ lack of natural meadows to support pollinating insects?

Is therapeutic hypothermia an effective treatment for hypoxic-ischemic encephalopathy, a type of neurological dysfunction in newborns?

Scientists discover the molecular composition of potentially deadly venomous fish

What are the belowground responses to long-term soil warming among different types of trees?

Do area-wide social and environmental factors affect individuals’ risk of cognitive impairment?

UCLA professor Helen Lavretsky reshapes brain health through integrative medicine research

[Press-News.org] Damon Runyon Cancer Research Foundation awards $3.9 million to exceptional early-career scientists