PRESS-NEWS.org - Press Release Distribution
PRESS RELEASES DISTRIBUTION

Study finds how some ion channels form structures permitting drug delivery

Study finds how some ion channels form structures permitting drug delivery
2023-08-30
(Press-News.org) A member of an important class of ion channel proteins can transiently rearrange itself into a larger structure with dramatically altered properties, according to a study led by researchers at Weill Cornell Medicine. The discovery is a significant advance in cell biology, likely solves a long-standing mystery about an unusual feature of some ion channels and has implications for the development of drugs targeting these proteins and for drug delivery.

Ion channels are ubiquitous in the cell membranes of higher organisms. They conduct small, charged molecules called ions into or out of cells, in order to regulate cell activity. They are necessary for most biological functions, from sensation to cognition to heartbeat. Although about 15 percent of pharmaceuticals work by targeting ion channels, scientists could target them more effectively if they knew more about the dynamics of their complex structures.

In the study, published Aug. 30 in Nature, the researchers examined the structural dynamics of an ion channel called TRPV3. They discovered an uncommon but striking structural rearrangement in which TRPV3, normally a “tetramer” made of four identical protein subunits, becomes a five-protein “pentamer.” The researchers found strong evidence that this structural rearrangement underlies a hitherto unexplained ion-channel phenomenon called pore dilation.

“These findings open up a broad new avenue of research on the workings of ion channels,” said study senior author Dr. Simon Scheuring, a professor of physiology and biophysics in anesthesiology at Weill Cornell Medicine.

The study’s first author was Dr. Shifra Lansky, a postdoctoral research associate in the Scheuring lab in the Department of Anesthesiology. The work was performed in collaboration with Dr. Crina Nimigean's lab in the Department of Anesthesiology at Weill Cornell Medicine.

TRPV3 is an ion channel that is involved in the sensing of warm temperatures, skin health, itch, hair growth, and other functions throughout the body. It belongs to the larger family of TRP ion channels, which have numerous biological roles in higher organisms. Drs. Scheuring and Lansky and their colleagues initially set out to map TRPV3’s structural dynamics—how its structure changes as it opens and closes its channel—using an advanced tool called high-speed atomic-force microscopy.

To the researchers’ surprise, they soon discovered that TRPV3, normally a tetramer, occasionally assembles itself into a pentamer, and can exist in this uncommon state for only about three minutes.

The scientists recognized that this substantial enlargement of the TRPV3 structure might account for the phenomenon of ion channel pore dilation, an oddity first reported in another ion channel in 1999, and in TRPV3 in 2005. Pore dilation is an unusual, transient state in which an ion channel opens to an abnormal extent, admitting much larger ions than usual, and becomes insensitive to its normal activators and inactivators. Whether pore dilation serves an evolved biological function isn’t clear, though it can be triggered by prolonged ion channel activation, and the researchers suspect it works as a protective mechanism against excessive exposure to a stimulus.

“If you bite on a strong chili pepper, for example, your mouth will be insensitive and in pain for a few minutes, during which you won’t want to take another bite,” Dr. Scheuring said. “Maybe that kind of protective alteration of sensitivity is what ion channel pore dilation is for.”

Pore dilation is also of interest to drug developers—inhibiting it may be therapeutic in some cases and activating it may provide a way to get large, water-soluble drug molecules into cells that would otherwise be impermeable to them.

Subsequently, the team used electron microscopy to obtain a high-resolution 3D structure of TRPV3 in its pentameric state. They showed that the pore of the TRPV3 pentamer is indeed much larger than the pore of the tetramer, corresponding to increased ion conductance and the ability to transport molecules. These features are associated with the pore dilation phenomenon. They also found that a compound known to make pore dilation more likely destabilizes the TRPV3 tetramer, making it about twice as likely to turn into a pentamer.

Thus, they concluded, pore dilation is related to this transient pentameric state of ion channels that are normally tetramers.

Pore dilation appears to be a quite common property of ion channels, functionally reported in at least seven channels from two different families, and so the discovery is expected to lead to much further research in this area, with the goal of understanding exactly how it occurs and how it can be controlled, perhaps for treating diseases.

“There are genetic diseases linked to mutations in TRPV channels, and we suspect that some of these mutations cause disease by increasing pentamer formation,” Dr. Lansky said. “If we can prove that, it would be a big step towards curing these diseases.”

Dr. Scheuring also noted that the process in which TRPV3 subunits diffuse through the cell membrane to turn tetramers into pentamers, and back again, represents a previously undiscovered mechanism for how proteins reshape their structures to modulate their functions.

“This is a completely novel way of thinking about protein conformational change,” he said.

END

[Attachments] See images for this press release:
Study finds how some ion channels form structures permitting drug delivery Study finds how some ion channels form structures permitting drug delivery 2 Study finds how some ion channels form structures permitting drug delivery 3

ELSE PRESS RELEASES FROM THIS DATE:

Discoveries on memory mechanisms could unlock new therapies for Alzheimer’s and other brain diseases

2023-08-30
  AURORA, Colo. (Aug. 30, 2023) – Scientists at the University of Colorado Anschutz Medical Campus have made a `paradigm shifting’ discovery on the mechanisms required for learning and memory that could lead to new therapies for Alzheimer’s disease and potentially Down syndrome. The study was published Wednesday in the journal Nature. For over 30 years, researchers believed that LTP or long-term potentiation, which is crucial for learning and memory, required enzymatic actions by an enzyme known as CaMKII. But a team of researchers led by Ulli ...

Newly engineered versions of bacterial enzyme reveal how antibiotics could be more potent

2023-08-30
Modern medicine depends on antibiotics to treat infections by disabling targets inside bacterial cells. Once inside these cells, antibiotics bind to certain sites on specific enzyme targets to stop bacterial growth. Randomly occurring changes (mutations) in the genes for these targets occur naturally, in some cases making the target harder for the antibiotic to attach to, and that bacterial version resistant to treatment. For this reason, the more antibiotics have been used over time, the greater the chances that bacterial populations will evolve to have mutants resistant to existing antibiotics, and the more urgent the call for new approaches ...

World’s coastal wetlands and coral reef islands are hanging by a thread, new study shows

2023-08-30
Coastal wetlands and coral reef islands will struggle to grow fast enough to keep pace with rising sea levels driven by climate change, according to a new study published in Nature. The study was conducted by an international team that includes a Tulane University researcher. The findings show that the future of marshes and other low-lying coastal areas depend heavily on whether global warming can be limited to less than 2 degrees Celsius (3.6 degrees Fahrenheit) as formulated by the Paris Agreement. A key finding of the paper is that coastal marshes, mangroves, ...

A simpler way to connect quantum computers

A simpler way to connect quantum computers
2023-08-30
Researchers have a new way to connect quantum devices over long distances, a necessary step toward allowing the technology to play a role in future communications systems. While today’s classical data signals can get amplified across a city or an ocean, quantum signals cannot. They must be repeated in intervals — that is, stopped, copied and passed on by specialized machines called quantum repeaters. Many experts believe these quantum repeaters will play a key role in future communication networks, allowing enhanced security and enabling connections between remote quantum computers. The Princeton study, published Aug. ...

Parental incarceration increases cardiovascular risk in young adults

2023-08-30
Cardiovascular disease remains the leading cause of racial disparities in mortality between Black and white people in the United States. New research from the University of Chicago Medicine suggests that parental incarceration may be contributing to these health gaps. According to the new study, people who experienced a parent or parental figure’s incarceration anytime before the age of 18 had higher levels of hypertension and coronary disease biomarkers than people whose parents were not incarcerated. These results indicate that mass incarceration may have transgenerational health consequences. Adverse childhood experiences (ACEs) are difficult ...

Unveiling global warming’s impact on daily precipitation with deep learning

Unveiling global warming’s impact on daily precipitation with deep learning
2023-08-30
A collaborative international research team led by Professor Yoo-Geun Ham from Chonnam National University and Professor Seung-Ki Min from Pohang University of Science and Technology (POSTECH) has made a discovery on the impact of global warming on global daily precipitation. Using a deep learning approach, they have unveiled a significant change in the characteristics of global daily precipitation for the first time. Their research findings were published on August 30 in the online version of Nature, the ...

Challenge accepted: High-speed AI drone overtakes world-champion drone racers

Challenge accepted: High-speed AI drone overtakes world-champion drone racers
2023-08-30
Remember when IBM’s Deep Blue won against Gary Kasparov at chess in 1996, or Google’s AlphaGo crushed the top champion Lee Sedol at Go, a much more complex game, in 2016? These competitions where machines prevailed over human champions are key milestones in the history of artificial intelligence. Now a group of researchers from the University of Zurich and Intel has set a new milestone with the first autonomous system capable of beating human champions at a physical sport: drone racing. The AI system, called Swift, won multiple races against three world-class champions in first-person view (FPV) ...

Could a cancer drug hold the key to a HIV cure?

Could a cancer drug hold the key to a HIV cure?
2023-08-30
An existing blood cancer drug has shown promise in killing ‘silent’ HIV cells and delaying reinfections – a significant pre-clinical discovery that could lead to a future cure for the disease. Hidden HIV cells, known as latent infection, are responsible for the virus permanently remaining in the body and cannot be treated by current therapy options. These hibernating, infected cells are the reason why people living with HIV require life-long treatment to suppress the virus. Led by WEHI and The Peter Doherty Institute for Infection ...

Robustness of the world's skyscrapers stress-tested by Surrey model

2023-08-30
The safety of tall buildings in the world's cities, in the face of extreme external traumas like vehicle impacts, blasts or fires, has been tested using a model developed by structural engineers at the University of Surrey – with reassuring results.  Surrey's structural engineers partnered with industry experts to check and enhance the robustness of skyscrapers. Surrey's researchers collaborated with experts at the respected collective of architects, designers, engineers and planners, Skidmore, Owings & Merrill (SOM), famous for buildings like the Burj Khalifa, the world's tallest skyscraper, and the Sears ...

Inequities in cardiovascular care are putting older female’s heart health at risk

Inequities in cardiovascular care are putting older female’s heart health at risk
2023-08-30
Toronto, ON, August 30, 2023 – Higher stroke risk among females with atrial fibrillation may be related to sex-based disparities in cardiovascular care, according to a new study from Women’s College Hospital, the Peter Munk Cardiac Centre (PMCC) at University Health Network (UHN) and ICES. Atrial fibrillation (AF) is a common type of irregular heart rhythm that is associated with a higher risk of stroke—after the age of 40, one in four strokes are caused by AF. Previous studies have found that female sex (assigned at birth) is a risk factor for AF-associated stroke. Recent research suggested that ...

LAST 30 PRESS RELEASES:

New perspective highlights urgent need for US physician strike regulations

An eye-opening year of extreme weather and climate

Scientists engineer substrates hostile to bacteria but friendly to cells

New tablet shows promise for the control and elimination of intestinal worms

Project to redesign clinical trials for neurologic conditions for underserved populations funded with $2.9M grant to UTHealth Houston

Depression – discovering faster which treatment will work best for which individual

Breakthrough study reveals unexpected cause of winter ozone pollution

nTIDE January 2025 Jobs Report: Encouraging signs in disability employment: A slow but positive trajectory

Generative AI: Uncovering its environmental and social costs

Lower access to air conditioning may increase need for emergency care for wildfire smoke exposure

Dangerous bacterial biofilms have a natural enemy

Food study launched examining bone health of women 60 years and older

CDC awards $1.25M to engineers retooling mine production and safety

Using AI to uncover hospital patients’ long COVID care needs

$1.9M NIH grant will allow researchers to explore how copper kills bacteria

New fossil discovery sheds light on the early evolution of animal nervous systems

A battle of rafts: How molecular dynamics in CAR T cells explain their cancer-killing behavior

Study shows how plant roots access deeper soils in search of water

Study reveals cost differences between Medicare Advantage and traditional Medicare patients in cancer drugs

‘What is that?’ UCalgary scientists explain white patch that appears near northern lights

How many children use Tik Tok against the rules? Most, study finds

Scientists find out why aphasia patients lose the ability to talk about the past and future

Tickling the nerves: Why crime content is popular

Intelligent fight: AI enhances cervical cancer detection

Breakthrough study reveals the secrets behind cordierite’s anomalous thermal expansion

Patient-reported influence of sociopolitical issues on post-Dobbs vasectomy decisions

Radon exposure and gestational diabetes

EMBARGOED UNTIL 1600 GMT, FRIDAY 10 JANUARY 2025: Northumbria space physicist honoured by Royal Astronomical Society

Medicare rules may reduce prescription steering

Red light linked to lowered risk of blood clots

[Press-News.org] Study finds how some ion channels form structures permitting drug delivery