(Press-News.org) Optical-resolution photoacoustic microscopy is an up-and-coming biomedical imaging technique for studying a broad range of diseases, such as cancer, diabetes and stroke. But its insufficient sensitivity has been a longstanding obstacle for its wider application. Recently, a research team from City University of Hong Kong (CityU) developed a multi-spectral, super-low-dose photoacoustic microscopy system with a significant improvement in the system sensitivity limit, enabling new biomedical applications and clinical translation in the future.
Photoacoustic microscopy is a biomedical imaging technique that combines ultrasound detection and laser-induced photoacoustic signals to create detailed images of biological tissue. When biological tissue is irradiated with a pulsed laser, it generates ultrasonic waves, which are then detected and converted into electric signals for imaging. This attention-getting technique can achieve up to capillary-level or sub-cellular resolution at greater depths than traditional optical microscopy methods. However, insufficient sensitivity has hindered the technology’s wider application.
“High sensitivity is important for high-quality imaging. And it helps detect chromophores (molecules that confer colour on materials by absorbing particular wavelengths of visible light) that do not strongly absorb light. It also helps lessen photobleaching and phototoxicity, reduce perturbation to the biological tissues of delicate organs, and broaden the choices of low-cost, low-power lasers in a wide spectrum,” explained Professor Wang Lidai, Associate Professor in the Department of Biomedical Engineering at CityU.
For instance, in an ophthalmic examination, a low-power laser is preferred for more safety and comfort. Long-term monitoring of pharmacokinetics or blood flow requires low-dose imaging to alleviate perturbation to tissue functions, he added.
To overcome the sensitivity challenge, Professor Wang and his research team recently developed a multi-spectral, super-low-dose photoacoustic microscopy (SLD-PAM) system, which breaks through the sensitivity limit of traditional photoacoustic microscopy, significantly improving sensitivity by about 33 times.
They achieved the breakthrough by combining improvement in the photoacoustic sensor design and innovation of a 4D spectral-spatial filter algorithm for computation. They improved the sensor design by using a lab-customized high-numerical-aperture acoustic lens, optimizing the optical and acoustic beam combiner, and improving the optical and acoustic alignment. The SLD-PAM also utilizes a low-cost multi-wavelength pulsed laser, providing 11 wavelengths, ranging from green to red light. The laser operates at a repetition frequency up to megahertz, and the spectral switching time is in sub-microseconds.
To demonstrate the significance and novelty of SLD-PAM, the team tested it thoroughly via in vivo animal imaging at super-low pulse energy with green-light and red-light sources, resulting in remarkable findings.
First, SLD-PAM enabled high-quality in vivo anatomical and functional imaging. The super-low laser power and high sensitivity significantly reduced perturbations in eye and brain imaging, paving an avenue for clinical translation. Second, without compromising image quality, SLD-PAM reduced photobleaching by about 85%, using lower laser power, and enabled the use of a much broader range of molecular and nano-probes. In addition, the system cost is significantly lower, making it more affordable for research laboratories and clinics.
“SLD-PAM enables non-invasive imaging of biological tissue with minimal damage to the subjects, offering a powerful and promising tool for anatomical, functional and molecular imaging,” said Professor Wang. “We believe that SLD-PAM can help advance the applications of photoacoustic imaging, enable numerous new biomedical applications, and pave a new avenue for clinical translation.”
Next, Professor Wang and his research team will test a broader range of small molecules and genetically encoded biomarkers in biological imaging using the SLD-PAM system. They also plan to adopt more types of low-power light sources in a widerspectra to develop wearable or portable microscopy.
The findings were published in the scientific journal Advanced Science under the title “Super-Low-Dose Functional and Molecular Photoacoustic Microscopy”.
The first co-authors are Dr Zhang Yachao and Dr Chen Jiangbo; the corresponding author is Professor Wang. The co-authors are Professor Sun Hongyan, Dr Zhang Jie, Dr Liu Chao and PhD student Zhu Jingyi. All are from the CityU. The research was funded by the Hong Kong Research Grants Council and the National Natural Science Foundation of China.
https://www.cityu.edu.hk/research/stories/2023/08/31/cityu-researchers-develop-ultra-sensitive-photoacoustic-microscopy-wide-biomedical-application-potential
END
CityU researchers develop ultra-sensitive photoacoustic microscopy for wide biomedical application potential
https://www.cityu.edu.hk/research/stories/2023/08/31/cityu-researchers-develop-ultra-sensitive-photoacoustic-microscopy-wide-biomedical-application-potential
2023-08-31
ELSE PRESS RELEASES FROM THIS DATE:
Henry Ford Health Hospitals earn full reaccreditation from National Accreditation Program for Breast Centers
2023-08-31
DETROIT – All five of Henry Ford Health’s acute care hospitals have earned a full three-year reaccreditation by the National Accreditation Program for Breast Centers (NAPBC), a quality program administered by the American College of Surgeons. With Henry Ford Hospital Detroit, Henry Ford Jackson Hospital, Henry Ford Macomb Hospital, Henry Ford West Bloomfield Hospital and Henry Ford Wyandotte Hospital earning full reaccreditation, Henry Ford has the highest number of Commission on Cancer and NAPBC-accredited hospitals of any health system in Michigan.
“The NAPBC accreditation is reflective of our unwavering commitment ...
Is digital media use a risk factor for psychosis in young adults?
2023-08-31
On average, young adults in Canada spend several hours on their smartphones every day. Many jump from TikTok to Netflix to Instagram, putting their phone down only to pick up a video game controller. A growing body of research is looking into the potential dangers of digital media overuse, as well as potential benefits of moderate digital media use, from a mental health standpoint.
A recent McGill University study of 425 Quebecers between the ages of 18 and 25 has found that young adults who have more frequent psychotic experiences also tend to spend more time using digital media. Interestingly, the study, which surveyed the participants ...
Why men, wealthy people and maritime residents are more likely to develop skin cancer
2023-08-31
A new study led by McGill University examines why people living in Atlantic regions are more at-risk for developing melanoma than other Canadians, providing lessons on skin cancer prevention for the whole country.
Rates of melanoma, a deadly form of skin cancer, have been rising globally, including in Canada. Current estimates indicate that up to 1 in 3 Canadians will develop some form of skin cancer during their lifetime. While some Atlantic provinces such as Prince Edward Island (PEI) and Nova Scotia have the highest incidence rate of melanoma in the country, neighbouring provinces like New Brunswick ...
The search for the super potato
2023-08-31
As climate change continues to pose severe challenges to ensuring sustainable food supplies around the world, scientists from McGill University are looking for ways to improve the resilience and nutritional quality of potatoes. Professor Martina Strömvik and her team have created a potato super pangenome to identify genetic traits that can help produce the next super spud.
“Our super pangenome sheds light on the potato’s genetic diversity and what kinds of genetic traits could potentially be bred into our modern-day crop to make it better,” ...
Better paths yield better AI
2023-08-31
Deep Learning (DL) performs classification tasks using a series of layers. To effectively execute these tasks, local decisions are performed progressively along the layers. But can we perform an all-encompassing decision by choosing the most influential path to the output rather than performing these decisions locally?
In an article published today in Scientific Reports, researchers from Bar-Ilan University in Israel answer this question with a resounding "yes". Pre-existing deep architectures have been improved by updating the most influential paths to the output.
"One can ...
Children’s books are still Whiter, and more male, than US society
2023-08-31
A new paper in the Quarterly Journal of Economics, published by Oxford University Press, finds that children’s books in the United States continue to underrepresent ethnic minorities. In addition, it finds that male characters are overrepresented in such stories and children are often presented with lighter skin tones for no apparent editorial reason.
Education teaches children about the world, its people, and their place in it. Much of this happens through the books society presents to children ...
New insight for stabilizing halide perovskite via thiocyanate substitution
2023-08-31
α-FAPbI3, a promising solar cell material with a cubic perovskite structure that is metastable at room temperature, can be stabilized by introducing a pseudo-halide ion like thiocyanate (SCN–) into its structure, demonstrated by Tokyo Tech researchers in a new study. Their finding provides new insights into the stabilization of the α-phase via grain boundary and pseudo-halide engineering.
The light we receive every day from the Sun, if harnessed efficiently, can help us tackle the ongoing global energy crisis as well as our concern with climate change. Materials with good photophysical properties, i.e., light absorption, ...
Scientists develop finger sweat test to detect antipsychotic drugs in patients
2023-08-31
Antipsychotic drugs treat incredibly vulnerable patients. Maintaining a treatment regimen is difficult for many patients, but not taking the medication is associated with a higher risk of poor health outcomes. These drugs are also very powerful with strong side-effects, and blood tests are often used to calibrate a patient’s dosage and confirm that they are taking the recommended dose.
However, blood tests are invasive and potentially uncomfortable. Scientists have now discovered a way to test the levels of common antipsychotic drugs in the sweat ...
Acting fast when an epidemic hits
2023-08-31
A team of researchers at the University of Waterloo and Dalhousie University have developed a method for forecasting the short-term progression of an epidemic using extremely limited amounts of data.
Their model, the Sparsity and Delay Embedding-based Forecasting model, or SPADE4, uses machine learning to predict the progression of an epidemic using only limited infection data. SPADE4 was tested on both simulated epidemics and real data from the fifth wave of the Covid-19 pandemic in Canada and successfully predicted the epidemics’ progressions with 95 per cent confidence.
“Covid taught us that we really need to come up with methods ...
Tracking the ol' mutation trail
2023-08-31
Kyoto, Japan -- From the early stages of cell mutations starting in puberty to their manifestations as breast cancer in later years, the entire process has remained shrouded in mystery.
Now, a team of researchers at Kyoto University has revealed the mechanism by which breast cancer is formed in the cells of the mammalian epithelium, whose main function is to secrete milk.
According to the team's first analysis, approximately 20 mutations accumulate annually in each epithelial cell until menopause. After menopause, however, the mutation rate significantlydecreases.
"Additionally, our results suggest ...
LAST 30 PRESS RELEASES:
New perspective highlights urgent need for US physician strike regulations
An eye-opening year of extreme weather and climate
Scientists engineer substrates hostile to bacteria but friendly to cells
New tablet shows promise for the control and elimination of intestinal worms
Project to redesign clinical trials for neurologic conditions for underserved populations funded with $2.9M grant to UTHealth Houston
Depression – discovering faster which treatment will work best for which individual
Breakthrough study reveals unexpected cause of winter ozone pollution
nTIDE January 2025 Jobs Report: Encouraging signs in disability employment: A slow but positive trajectory
Generative AI: Uncovering its environmental and social costs
Lower access to air conditioning may increase need for emergency care for wildfire smoke exposure
Dangerous bacterial biofilms have a natural enemy
Food study launched examining bone health of women 60 years and older
CDC awards $1.25M to engineers retooling mine production and safety
Using AI to uncover hospital patients’ long COVID care needs
$1.9M NIH grant will allow researchers to explore how copper kills bacteria
New fossil discovery sheds light on the early evolution of animal nervous systems
A battle of rafts: How molecular dynamics in CAR T cells explain their cancer-killing behavior
Study shows how plant roots access deeper soils in search of water
Study reveals cost differences between Medicare Advantage and traditional Medicare patients in cancer drugs
‘What is that?’ UCalgary scientists explain white patch that appears near northern lights
How many children use Tik Tok against the rules? Most, study finds
Scientists find out why aphasia patients lose the ability to talk about the past and future
Tickling the nerves: Why crime content is popular
Intelligent fight: AI enhances cervical cancer detection
Breakthrough study reveals the secrets behind cordierite’s anomalous thermal expansion
Patient-reported influence of sociopolitical issues on post-Dobbs vasectomy decisions
Radon exposure and gestational diabetes
EMBARGOED UNTIL 1600 GMT, FRIDAY 10 JANUARY 2025: Northumbria space physicist honoured by Royal Astronomical Society
Medicare rules may reduce prescription steering
Red light linked to lowered risk of blood clots
[Press-News.org] CityU researchers develop ultra-sensitive photoacoustic microscopy for wide biomedical application potentialhttps://www.cityu.edu.hk/research/stories/2023/08/31/cityu-researchers-develop-ultra-sensitive-photoacoustic-microscopy-wide-biomedical-application-potential