(Press-News.org) BOULDER—One of the most enduring mysteries in solar physics is why the Sun's outer atmosphere, or corona, is millions of degrees hotter than its surface. Now scientists believe they have discovered a major source of hot gas that replenishes the corona: narrow jets of plasma, known as spicules, shooting up from just above the Sun's surface. The finding addresses a fundamental question in astrophysics: how energy moves from the Sun's interior to create its hot outer atmosphere.
"It's always been quite a puzzle to figure out why the Sun's atmosphere is hotter than its surface," says Scott McIntosh, a scientist at the National Center for Atmospheric Research (NCAR), a coauthor of the study. "By identifying that these jets insert heated plasma into the Sun's outer atmosphere, we gain a greater knowledge of the corona and possibly improve our understanding of the Sun's subtle influence on Earth's upper atmosphere."
The new study, published this week in the journal Science, was conducted by scientists from Lockheed Martin's Solar and Astrophysics Laboratory (LMSAL), NCAR, and the University of Oslo. It was supported by NASA and the National Science Foundation, NCAR's sponsor.
Delivering heat to the Sun's corona
The research team focused on spicules, which are fountains of plasma propelled upward from near the surface of the Sun into its outer atmosphere. For decades scientists thought that spicules might be sending heat into the corona. However, following observational research in the 1980s, it was found that spicule plasma did not reach coronal temperatures, and so this line of study largely fell out of vogue.
"Heating of spicules to millions of degrees has never been directly observed, so their role in coronal heating had been dismissed as unlikely," says Bart De Pontieu, the lead author and a solar physicist at LMSAL.
In 2007, De Pontieu, McIntosh, and their colleagues identified a new class of spicules that moved much faster and were shorter lived than the traditional spicules. These "Type II" spicules shoot upward at high speeds, often in excess of 60 miles per second (100 kilometers per second), before disappearing. The rapid disappearance of these jets suggested that the plasma they carried might get very hot, but direct observational evidence of this process was missing.
In the Science paper, the researchers used new observations from the Atmospheric Imaging Assembly on NASA's recently launched Solar Dynamics Observatory and NASA's Focal Plane Package for the Solar Optical Telescope (SOT) on the Japanese Hinode satellite.
"The high spatial and temporal resolution of the newer instruments was crucial in revealing this previously hidden coronal mass supply," says McIntosh, a solar physicist at NCAR's High Altitude Observatory. "Our observations reveal, for the first time, the one-to-one connection between plasma that is heated to millions of degrees kelvin and the spicules that insert this plasma into the corona."
Looking toward the interface
The findings provide an observational challenge to existing theories of coronal heating. During the past few decades, scientists have proposed a wide variety of theoretical models, but the lack of detailed observation has significantly hampered progress. "One of our biggest challenges is to understand what drives and heats the material in the spicules," says De Pontieu.
A key step, according to De Pontieu, will be to better understand the interface region between the Sun's visible surface, or photosphere, and its corona. Another NASA mission, the Interface Region Imaging Spectrograph (IRIS), is scheduled for launch in 2012. IRIS will provide high-fidelity data on the complex processes and enormous contrasts of density, temperature, and magnetic field between the photosphere and corona. Researchers hope this will reveal more about the spicule heating and launch mechanisms.
Plasma jets are prime suspect in solar mystery
2011-01-07
ELSE PRESS RELEASES FROM THIS DATE:
When less is more: How mitochondrial signals extend lifespan
2011-01-07
LA JOLLA, CA-In making your pro-longevity resolutions, like drinking more red wine and maintaining a vibrant social network, here's one you likely forgot: dialing down your mitochondria. It turns out that slowing the engines of these tiny cellular factories could extend your life-an observation relevant not only to aging research but to our understanding of how cells communicate with each another.
So report researchers at the Salk Institute for Biological Studies in the Jan. 7, 2011, issue of Cell. Howard Hughes Medical Institute investigator Andrew Dillin, Ph.D., and ...
Researchers visualize herpes virus' tactical maneuver
2011-01-07
For the first time, researchers have developed a 3D picture of a herpes virus protein interacting with a key part of the human cellular machinery, enhancing our understanding of how it hijacks human cells to spread infection and opening up new possibilities for stepping in to prevent or treat infection. This discovery uncovers one of the many tactical manoeuvres employed by the virus.
The Biotechnology and Biological Sciences Research Council (BBSRC)-funded team, led by The University of Manchester, have used NMR - a technique related to the one used in MRI body scanners ...
Stem cell discovery could lead to improved bone marrow transplants
2011-01-07
SANTA CRUZ, CA--Researchers at the University of California, Santa Cruz, have identified a key molecule for establishing blood stem cells in their niche within the bone marrow. The findings, reported in the January issue of Cell Stem Cell, may lead to improvements in the safety and efficiency of bone marrow transplants.
Bone marrow transplants are a type of stem cell therapy used to treat cancers such as lymphoma and leukemia and other blood-related diseases. In a bone marrow transplant, the "active ingredients" are hematopoietic stem cells, which live in the bone marrow ...
Steering cancer inflammation to inhibit tumor growth and spread
2011-01-07
Most cancer tissues are invaded by inflammatory cells that either stimulate or inhibit the growth of the tumor, depending on what immune cells are involved. Now a Swedish-Belgian research team has shown that a protein that naturally occurs in the body, HRG, inhibits tumor growth and metastasis into secondary organs by activating specific immune cells. The study is being published today in the Net edition of the prestigious journal Cancer Cell.
- Our study shows that the regulation of tumor-associated inflammation can be utilized to treat cancer and that there is a great ...
'Timing is everything' in ensuring healthy brain development
2011-01-07
Work published today shows that brain cells need to create links early on in their existence, when they are physically close together, to ensure successful connections across the brain throughout life.
In people, these long-distance connections enable the left and right side of the brain to communicate and integrate different kinds of information such as sound and vision. A change in the number of these connections has been found in many developmental brain disorders including autism, epilepsy and schizophrenia.
The Newcastle University researchers Dr Marcus Kaiser ...
Punctuated evolution in cancer genomes
2011-01-07
Remarkable new research overthrows the conventional view that cancer always develops in a steady, stepwise progression. It shows that in some cancers, the genome can be shattered into hundreds of fragments in a single cellular catastrophe, wreaking mutation on a massive scale.
The scars of this chromosomal crisis are seen in cases from across all the common cancer types, accounting for at least one in forty of all cancers. The phenomenon is particularly common in bone cancers, where the distinctively ravaged genome is seen in up to one in four cases.
The team looked ...
New study reveals impact of eating disorders on Native-Americans
2011-01-07
Scientists in Connecticut have carried out one of the first psychological studies into eating disorders in Native American (NA) populations. The research, published in The International Journal of Eating Disorders, provides new insights into the extent to which Native American populations experience eating disorders, revealing that women are more likely to report behavioral symptoms then men, while challenging views that NA men and ethnically white men will experience different psychological symptoms.
The team, led by Professor Ruth Striegel-Moore from Wesleyan University ...
Scripps Research scientists develop groundbreaking technology to detect Alzheimer's disease
2011-01-07
JUPITER, FL, January 5, 2011 – Scientists from the Florida campus of The Scripps Research Institute, have developed a novel technology that is able to detect the presence of immune molecules specific to Alzheimer's disease in patients' blood samples. While still preliminary, the findings offer clear proof that this breakthrough technology could be used in the development of biomarkers for a range of human diseases.
The study, led by Scripps Research Professor Thomas Kodadek, Ph.D., was published in the January 7, 2011 edition of the journal Cell.
Traditionally, antigens—a ...
Genetic abnormalities identified in pluripotent stem cell lines
2011-01-07
A multinational team of researchers led by stem cell scientists at the University of California, San Diego School of Medicine and Scripps Research Institute has documented specific genetic abnormalities that occur in human embryonic (hESC) and induced pluripotent stem cell (iPSC) lines. Their study, "Dynamic changes in the copy number of pluripotency and cell proliferation genes in human ESCs and iPSCs during reprogramming and time in culture" will be published in the January 7 issue of the journal Cell Stem Cell.
The published findings highlight the need for frequent ...
Neural stem cells maintain high levels of reactive oxygen species, UCLA study finds
2011-01-07
For years, the majority of research on reactive oxygen species (ROS) – ions or very small molecules that include free radicals – has focused on how they damage cell structure and their potential link to stroke, cardiovascular disease and other illnesses.
However, researchers at the Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research have shown for the first time that neural stem cells, the cells that give rise to neurons, maintain high levels of ROS to help regulate normal self-renewal and differentiation.
The findings, published in the Jan. ...