(Press-News.org) Annual tree-ring growth records from more than 122 species of trees show that trees growing in wetter forests are more sensitive to increasing drought. The findings – which tackle a research question that has yielded contradictory results in the past – suggest that land management and policy focused solely on drought effects in drier regions overestimates the resilience of forests in wetter regions. Forests cover roughly 30% of Earth’s surface and, in addition to providing a host of valuable ecosystem services and harboring huge biodiversity, they play a crucial role in the planet’s carbon cycle, absorbing more atmospheric carbon than all other terrestrial ecosystems. However, ongoing climate change is shifting the structure and function of forests worldwide, threatening tree growth and survival. What’s more, research suggests that forests will continue to shift from carbon sinks to sources as the effects of climate change increase. Thus, to manage and respond to these changes, there is a critical need to predict which forests are most vulnerable to a hotter and drier future. Previous studies that have explored variation in drought sensitivity have produced contradictory results; while some have suggested that trees in drier areas of their ecological range are the most drought-sensitive, others have concluded that trees growing in wetter portions of their range are the most vulnerable as they lack adaptations that could make their counterparts in drier regions more resilient. To investigate this question, Robert Heilmayer and colleagues analyzed 6.6 million tree ring measurements from 122 species to evaluate trees’ sensitivity to water and energy availability. Although drought-induced declines in tree growth frequently occur in dry regions, Heilmayer et al. found that trees growing in wet and warm regions of their range are the most vulnerable to drought and will likely experience the greatest declines in growth under climate change in the next century. The findings suggest that drought adaptations in trees from more arid regions could partially protect them from climate change-induced drought. “Policy-makers who seek to protect forests from climate change may need to expand the focus of conservation interventions beyond species’ dry-range edges,” write the authors. “By contrast, drought adaptations in populations from drier regions could be useful for management interventions, including assisted migration into wetter regions.”
END
Trees in wetter forests more sensitive to drought than trees in drier regions – a finding with policy implications
2023-12-07
ELSE PRESS RELEASES FROM THIS DATE:
A new 66 million-year history of carbon dioxide offers little comfort for today
2023-12-07
A massive new review of ancient atmospheric carbon-dioxide levels and corresponding temperatures lays out a daunting picture of where the Earth’s climate may be headed. The study covers geologic records spanning the past 66 million years, putting present-day concentrations into context with deep time. Among other things, it indicates that the last time atmospheric carbon dioxide consistently reached today’s human-driven levels was 14 million years ago—much longer ago than some existing assessments indicate. It asserts that long-term climate is highly sensitive to greenhouse gas, with cascading effects that may evolve over many millennia.
The ...
Grunt or whistle: successful honey-hunters know how to communicate with wild honey-seeking birds
2023-12-07
In many parts of Africa, humans cooperate with a species of wax-eating bird called the greater honeyguide, Indicator indicator, which leads them to wild bees’ nests with a chattering call. By using specialised sounds to communicate with each other, both species can significantly increase their chances of accessing calorie-dense honey and beeswax.
Human honey-hunters in different parts of Africa use different calls to communicate with honeyguides. In a new study, researchers have discovered that honeyguide birds in Tanzania and Mozambique discriminate among honey-hunters’ calls, responding much more readily to ...
Geoscientists map changes in atmospheric CO2 over past 66 million years
2023-12-07
Embargoed: Not for Release Until 2:00 pm U.S. Eastern Time Thursday, Dec. 7 2023.
Today atmospheric carbon dioxide is at its highest level in at least several million years thanks to widespread combustion of fossil fuels by humans over the past couple centuries.
But where does 419 parts per million (ppm)—the current concentration of the greenhouse gas in the atmosphere—fit in Earth’s history?
That’s a question an international community of scientists, featuring key contributions by University of Utah geologists, is sorting out by examining a plethora of markers in the geologic record that offer ...
Ancient stars made extraordinarily heavy elements
2023-12-07
How heavy can an element be? An international team of researchers has found that ancient stars were capable of producing elements with atomic masses greater than 260, heavier than any element on the periodic table found naturally on Earth. The finding deepens our understanding of element formation in stars.
We are, literally, made of star stuff. Stars are element factories, where elements constantly fuse or break apart to create other lighter or heavier elements. When we refer to light or heavy elements, we’re talking about their atomic mass. Broadly speaking, atomic ...
Soundwaves harden 3D-printed treatments in deep tissues
2023-12-07
DURHAM, N.C. -- Engineers at Duke University and Harvard Medical School have developed a bio-compatible ink that solidifies into different 3D shapes and structures by absorbing ultrasound waves. Because it responds to sound waves rather than light, the ink can be used in deep tissues for biomedical purposes ranging from bone healing to heart valve repair.
This work appears on December 7 in the journal Science.
The uses for 3D-printing tools are ever increasing. Printers create prototypes of medical devices, design flexible, ...
Physicists ‘entangle’ individual molecules for the first time, hastening possibilities for quantum information processing
2023-12-07
For the first time, a team of Princeton physicists have been able to link together individual molecules into special states that are quantum mechanically “entangled.” In these bizarre states, the molecules remain correlated with each other—and can interact simultaneously—even if they are miles apart, or indeed, even if they occupy opposite ends of the universe. This research was recently published in the journal Science.
“This is a breakthrough in the world of molecules because of the fundamental importance of quantum entanglement,” said Lawrence Cheuk, assistant professor of physics at Princeton ...
Wild birds lead people to honey — and learn from them
2023-12-07
Key takeaways
People in parts of Africa communicate with a wild bird, the greater honeyguide, to locate bee colonies and harvest their honey and beeswax.
A study by UCLA anthropologist Brian Wood and other authors show how this partnership is maintained and varies across cultures.
They demonstrate the bird’s ability to learn distinct vocal signals traditionally used by different honey-hunting communities.
In parts of Africa, people communicate with a wild bird — the greater honeyguide — in order to locate bee colonies and harvest their stores of honey and beeswax.
It’s a rare example of ...
Evolving trends in cosmetic breast augmentation: New data
2023-12-07
November 30, 2023 – Ongoing quality improvement data submitted by Board-certified plastic surgeons highlight current trends in surgical technique in cosmetic breast augmentation using implants, reports a study in the December issue of Plastic and Reconstructive Surgery®, the official medical journal of the American Society of Plastic Surgeons (ASPS). The journal is published in the Lippincott portfolio by Wolters Kluwer.
"The findings illustrate evolving trends in breast enhancement over the past 16 years, including factors like the location of the incision and the type and positioning of implants," comments lead author Michael J. Stein, ...
Princeton Chemistry develops catalyst for electronically controlled C–H functionalization
2023-12-07
The Chirik Group at the Princeton Department of Chemistry is chipping away at one of the great challenges of metal-catalyzed C–H functionalization with a new method that uses a cobalt catalyst to differentiate between bonds in fluoroarenes, functionalizing them based on their intrinsic electronic properties.
In a paper published this week in Science, researchers show they are able to bypass the need for steric control and directing groups to induce cobalt-catalyzed borylation that is meta-selective.
The lab’s research ...
Llama power: Tiny llama nanobodies neutralize different noroviruses. Can they improve human anti-viral therapies?
2023-12-07
Human noroviruses cause acute gastroenteritis, a global health problem for which there are no vaccines or antiviral drugs. Although most healthy patients recover completely from the infection, norovirus can be life-threatening in infants, the elderly and people with underlying diseases. Estimates indicate that human noroviruses cause approximately 684 million illnesses and 212,000 deaths annually.
“Human noroviruses are highly diverse,” said first author Dr. Wilhelm Salmen, a graduate student in Dr. B V Venkataram Prasad’s lab while he was working ...