PRESS-NEWS.org - Press Release Distribution
PRESS RELEASES DISTRIBUTION

Au@Cu7S4 Yolk@Shell nanocrystals set new hydrogen production activity record under visible and near infrared irradiation

Au@Cu7S4 Yolk@Shell nanocrystals set new hydrogen production activity record under visible and near infrared irradiation
2024-02-27
(Press-News.org)

The sunlight received by Earth is a mixed bag of wavelengths ranging from ultraviolet to visible to infrared. Each wavelength carries inherent energy that, if effectively harnessed, holds great potential to facilitate solar hydrogen production and diminish reliance on non-renewable energy sources. Nonetheless, existing solar hydrogen production technologies face limitations in absorbing light across this broad spectrum, particularly failing to harness the potential of NIR light energy that reaches Earth.

Recent research has identified that both Au and Cu7S4 nanostructures exhibit a distinctive optical characteristic known as localized surface plasmon resonance (LSPR) (Fig.1). It can be precisely adjusted to absorb wavelengths spanning the visible to NIR spectrum. A team of researchers, led by Associate Professor Tso-Fu Mark Chang and Lecturer Chun-Yi Chen from Tokyo Institute of Technology, and Professor Yung-Jung Hsu from National Yang Ming Chiao Tung University, seized this possibility and developed an innovative Au@Cu7S4 yolk@shell nanocrystal capable of producing hydrogen when exposed to both visible and NIR light.

Their findings were published in Nature Communications on 9 January 2024.

“We realized that wide-spectrum-driven hydrogen production is gaining momentum in recent days as a potential green energy source. At the same time, we saw that there were not many currently available options for photocatalysts that could respond to NIR irradiation,” says Dr. Hsu and Dr. Chang. “So, we decided to create one by combining two promising nanostructures, i.e. Au and Cu7S4, with tailorable LSPR features.”

The research team utilized an ion-exchange reaction for the synthesis of Au@Cu7S4 nanocrystals, which were subsequently analyzed using high-resolution transmission electron microscopy, X-ray absorption spectroscopy and transient absorption spectroscopy to investigate the structural and optical properties. These investigations confirmed that Au@Cu7S4 features a yolk@shell nanostructure, endowed with dual-plasmonic optical properties. Furthermore, ultrafast spectroscopy data revealed that Au@Cu7S4 maintained long-lived charge separation states when exposed to both visible and NIR light, highlighting its potential for efficient solar energy conversion.

The research team discovered that the yolk@shell nanostructures inherent to the Au@Cu7S4 nanocrystals notably enhanced their photocatalytic capabilities. “The confined space within the hollow shell improved the molecular diffusion kinetics, thereby augmenting the interactions among reactive species. Additionally, the mobility of the yolk particles played a crucial role in establishing a homogeneous reaction environment as they were able to agitate the reaction solution effectively,” explains Dr. Chen.

Consequently, this innovative photocatalyst reached a peak quantum yield of 9.4 % in the visible range (500 nm) and achieved a record-breaking quantum yield of 7.3 % in the NIR range (2200 nm) for hydrogen production. Distinctively, unlike conventional photocatalytic systems, this novel approach eliminates the need for co-catalysts to enhance hydrogen production reactions (Fig. 2).  

Overall, the study introduces a sustainable photocatalytic platform for solar fuel generation that boasts remarkable hydrogen production capabilities and sensitivity to a broad spectrum of light. It showcases the potential of leveraging the LSPR properties of Au and Cu7S4 for the effective capture of previously untapped NIR energy. “We are optimistic that our findings will motivate further investigations into tweaking the LSPR properties of self-doped, nonstoichiometric semiconductors, aiming to create photocatalysts responsive across a wide spectrum for a variety of solar powered applications,” concludes Dr. Hsu and Dr. Chang.

 

END


[Attachments] See images for this press release:
Au@Cu7S4 Yolk@Shell nanocrystals set new hydrogen production activity record under visible and near infrared irradiation Au@Cu7S4 Yolk@Shell nanocrystals set new hydrogen production activity record under visible and near infrared irradiation 2 Au@Cu7S4 Yolk@Shell nanocrystals set new hydrogen production activity record under visible and near infrared irradiation 3

ELSE PRESS RELEASES FROM THIS DATE:

Press program now available for the world's largest physics conference

2024-02-27
The American Physical Society’s March Meeting begins next week with presentations on new research in climate science, medicine, biological physics, quantum information, superconductivity, condensed matter, and more. The conference will be in person in Minneapolis and online everywhere March 3-8. Press Kit There are no press conferences planned for this year’s program. However, tip sheets about newsworthy presentations are now available in the March Meeting press kit. Registered journalists and public information officers will also receive emails with press information daily for the duration of the meeting.  Press Room  In-person press registrants ...

Development of a thick-film conductive ink suitable for large-area, large-current printed electronics

Development of a thick-film conductive ink suitable for large-area, large-current printed electronics
2024-02-27
1. NIMS, Sumitomo Metal Mining Co., Ltd. (based in Minato City, Tokyo), N.E. CHEMCAT CORPORATION (based in Minato City, Tokyo) and Priways Co., Ltd. (a NIMS-founded startup based in Tsukuba, Ibaraki) have jointly developed a thick-film, electrically conductive ink suitable for printing electronic circuits and sensors on the surfaces of films and other substrates to manufacture printed electronics. Sumitomo Metal Mining and Priways displayed the ink during the 38th Nepcon Japan exhibition to be held from January ...

Customizable carbon and its potential impact on green energy

Customizable carbon and its potential impact on green energy
2024-02-27
There’s a lot of research about moving away from carbon as an energy source, but what if instead the carbon that is being used is applied to its full capacity?   The importance of carbon as an energy source is not to be downplayed. Unfortunately, the reliance on these carbon-based materials has proven to be disastrous for the environment, especially in the quantities they are consumed on a global basis. Therefore, alternative means have to be researched. Superstructure carbons (SCC) are a possible way to use carbons in a more efficient and “green” way that can exceed the current performance and longevity ...

IVI to open Africa Regional Office in Rwanda

2024-02-27
The International Vaccine Institute (IVI), an international organization with a mission to discover, develop, and deliver safe, effective, and affordable vaccines for global health, and the Ministry of Health of Rwanda announced today that IVI will open its Africa Regional Office in Kigali this year. The IVI Board of Trustees (BOT) confirmed Rwanda as the location for IVI’s Africa Regional Office at a meeting in February, following a detailed evaluation of proposals from five countries to host the regional office.   Dr. Jerome Kim, Director General of IVI, said: “We are ...

Imaging grain boundaries that impede lithium-ion migration in solid-state batteries

Imaging grain boundaries that impede lithium-ion migration in solid-state batteries
2024-02-27
1. A NIMS research team has developed a new technique to image grain boundaries obstructing lithium-ion migration in solid-state batteries—a promising type of next-generation battery. 2. Solid-state batteries—next-generation rechargeable batteries—are intended to be safer and have higher energy densities than conventional lithium-ion batteries by replacing liquid organic electrolytes with solid electrolytes. A major issue in current solid-state battery R&D is the obstruction of ...

ReadCube expands its award-winning literature management platform with the launch of Literature Review

ReadCube expands its award-winning literature management platform with the launch of Literature Review
2024-02-27
Digital Science is pleased to announce that ReadCube, an award-winning leader in literature management and full-text document delivery, has launched a new solution for research-driven organizations – known simply as Literature Review by ReadCube. Literature Review seamlessly integrates with ReadCube's premier literature management platform, trusted by over 650 research organizations globally. Known for its best-in-class user experience and robust literature workflows, ReadCube's newest solution delivers a turnkey end-to-end workflow for teams tasked with monitoring and analyzing published literature related ...

Determine stroke risk at an early stage using tear fluid, mitochondria and AI-based data

Determine stroke risk at an early stage using tear fluid, mitochondria and AI-based data
2024-02-27
Every year, over 100 million people worldwide suffer a stroke. Ischemic strokes (cerebral infarction) are the most common, but they can also occur "silently" and therefore often go undetected. This can result in serious illnesses such as dementia, depression or even suicide. In order to determine the risk of stroke at an early stage, Prof. Dr. Olga Golubnitschaja, head of the research group for 3P (predictive, preventive and personalized) medicine at the University Hospital Bonn (UKB), together with the University of Bonn and other authors from 25 institutions from 11 countries, has developed a holistic approach to health ...

Researchers look at environmental impacts of AI tools

2024-02-27
OAK BROOK, Ill. – As artificial intelligence (AI) is increasingly used in radiology, researchers caution that it’s essential to consider the environmental impact of AI tools, according to a focus article published today in Radiology, a journal of the Radiological Society of North America (RSNA). Health care and medical imaging significantly contribute to the greenhouse gas (GHG) emissions fueling global climate change. AI tools can improve both the practice of and sustainability in radiology through optimized imaging protocols resulting in shorter scan times, improved scheduling ...

New consortium MetrANOVA to create a measurement and analysis toolbox for research and education networks worldwide

New consortium MetrANOVA to create a measurement and analysis toolbox for research and education networks worldwide
2024-02-27
February 27 — Five of the world’s leading research and education (R&E) networking organizations have joined forces to form MetrANOVA, a consortium for Advancing Network Observation, Visualization, and Analysis. Together, founding members Energy Sciences Network (ESnet), GÉANT, GlobalNOC at Indiana University, Internet2, and Texas Advanced Computing Center (TACC) operate and connect a dizzying number of national, regional, and local R&E networks — yet representing a portion of the decentralized fabric linking scientific researchers in hundreds of countries ...

Drug-resistant tuberculosis responds rapidly to bedaquiline-based second-line therapy

Drug-resistant tuberculosis responds rapidly to bedaquiline-based second-line therapy
2024-02-27
Patients who have drug-resistant tuberculosis (TB) have a similar microbiological response to bedaquiline-based second-line medications as patients with drug-sensitive TB taking first-line regimens, according to researchers at Weill Cornell Medicine in New York and GHESKIO Centers in Haiti. Second-line medications are those that are given when one or more of the drugs given first for the disease are not effective. The research could have implications for shortening the duration of treatment for drug-resistant TB, which currently ...

LAST 30 PRESS RELEASES:

Key to the high aggressiveness of pancreatic cancer identified

How proactive salmon conservation in the North Pacific can deliver global benefits

Blocking chemokine receptor increases effectiveness of glucocorticoids in multiple myeloma treatment

Amount of sunlight reaching Earth’s surface varies over decades, researchers report

Heart valve abnormality is associated with malignant arrhythmias

Explainable AI for ship navigation raises trust, decreases human error

Study reveals erasing inequality could prevent hundreds of adverse births annually in major UK city

No “uncanny valley” effect in science-telling AI avatars

New UNCG research shows southern shrews shrink in winter

Children exposed to brain-harming chemicals while sleeping

Emotions and levels of threat affect communities’ resilience during extreme events

New CONSORT reporting guidelines published today in five medical journals

Experts stress importance of vaccination amidst measles outbreaks

Enabling stroke victims to 'speak': $19 million toward brain implants to be built at U-M

Study captures sharp uptake in use of new weight loss and glucose-lowering medications

Van Andel Institute to recognize Dr. J. Timothy Greenamyre with 2025 Jay Van Andel Award for Outstanding Achievement in Parkinson’s Disease Research

One firearm injury was treated every 30 minutes in emergency departments in a study of 10 jurisdictions

The gut health benefits of sauerkraut

Children’s Hospital of Philadelphia researchers chart natural history of patients with SCN8A-related disorders

Archaeologists measured and compared the size of 50,000 ancient houses to learn about the history of inequality -- they found that it’s not inevitable

Peptide imitation is the sincerest form of plant flattery

Archaeologists discover historical link between inequality and sustainability

Researchers develop an LSD analogue with potential for treating schizophrenia

How does our brain regulate generosity?

New study reveals wealth inequality’s deep roots in human prehistory

New archaeological database reveals links between housing and inequality in ancient world

New, non-toxic synthesis method for “miracle material” MXene

Cutting-edge optical genome mapping technology shows promise for diagnosis, prognosis, and therapeutic options of multiple myeloma

Study looks at impact of COVID-19 pandemic on rates of congenital heart disease procedures among children

UH researcher unveils new model to evaluate impact of extreme events and natural hazards

[Press-News.org] Au@Cu7S4 Yolk@Shell nanocrystals set new hydrogen production activity record under visible and near infrared irradiation