(Press-News.org) They published their work on March. 4th in Energy Material Advances, a Science Partner Journal (https://spj.science.org/journal/energymatadv).
"The development of cost-effective and high-performance electrochemical energy storage devices is imperative," said paper's corresponding author Wei Chen, a professor in the School of Chemistry and Materials Science, University of Science and Technology of China (USTC). "Currently, lithium-ion batteries still dominate the market, but they are limited in both lithium as a resource and in their power densities."
Chen explained that potassium-ion hybrid capacitors (PIHCs) has several significant advantages as an alternative to lithium-ion batteries, especially to dual-carbon potassium ion hybrid capacitors (DC-PIHCs) with capacitive carbon cathode and battery-type carbon anode due to their low cost and high power/energy density.
"Currently, for battery-type carbon anodes, the slow reaction kinetics and huge volume expansion result in poor rate performance and short long-cycle lifespan, which fail to match with those of capacitive cathodes." Chen said. "Therefore, it is significant to develop carbonaceous anodes with superior rate performance and long cycle life for DC-PIHCs."
To improve electrochemical performance, various strategies have been developed for adjusting the microstructure of carbonaceous materials, such as heteroatom doping and porous structure construction. Nowadays, the synthesis methods of porous carbon usually adopt various templates, which increased the cost and generated a lot of byproducts.
Moreover, different types of nitrogen doping exhibited distinct roles in carbon materials. It was widely accepted that pyrrolic nitrogen and pyridinic nitrogen are electrochemically active sites in carbon materials, while graphitic nitrogen doped into the carbon lattice has no effect on K+ adsorption. Therefore, it is necessary to explore facile and economical strategies for the synthesis of high-concentration edge-nitrogen (pyrrolic nitrogen and pyridinic nitrogen) doped porous carbons.
Chen said, "In this paper, we developed a template-free strategy for preparation of high-concentration edge-nitrogen doped porous carbon (NPC) anode of DC-PHIC derived from D (+)-glucosamine hydrochloride (DGH) and carboxylated chitosan (CC), which includes two steps of hydrothermal polymerization and high-temperature carbonization. Our aim is to provide inspiration for future research in the field."
"BET and XPS analysis demonstrated that NPC presents large specific surface area (523.2 m2/g) and exhibits high edge-nitrogen doping level of 5.19 at%, which improved K+ adsorption and intercalation capabilities." Chen said.
"As a result, the NPC anode displayed a high capacity of 315.4 mA h g-1 at 0.1 A g-1 and a capacity of 189.1 mA h g-1 at 5 A g-1 over 2000 cycles." Chen said. "The assembled NPC//CMK-3 PIHC delivers a high energy density of 71.1 W h kg-1 with only 0.0025% capacity decay per cycle at the power density of 771.9 W kg-1 over 8000 cycles."
Chen is also affiliated with the Hefei National Research Center for Physical Sciences at the Microscale. Other contributors include Zhen Pan, Yitai Qian, Lidong Sun, Yang Li and Zuodong Zhang, School of Chemistry and Materials Science, University of Science and Technology of China, USTC; Ke Li, Key Laboratory of Agricultural Sensors, Ministry of Agriculture and Rural Affairs, Anhui Provincial Key Laboratory of Smart Agricultural Technology and Equipment, School of Information and Computer, Anhui Agricultural University.
The Fundamental Research Funds for the Central Universities (Grant KY2060000150, GG2060127001, WK2060000040) supported this work.
###
Reference
Authors: ZHEN PAN, KE LI, LIDONG SUN, YANG LI, ZUODONG ZHANG, YITAI QIAN, AND WEI CHEN
Title of original paper: A High-Concentration Edge-Nitrogen-Doped Porous Carbon Anode via Template Free Strategy for High-Performance Potassium-Ion Hybrid Capacitors
Journal: Energy Material Advances
DOI: 10.34133/energymatadv.0080
Affiliations: 1Department of Applied Chemistry, School of Chemistry and Materials Science, Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, China. 2Key Laboratory of Agricultural Sensors, Ministry of Agriculture and Rural Affairs, Anhui Provincial Key Laboratory of Smart Agricultural Technology and Equipment, School of Information and Computer, Anhui Agricultural University, Hefei, China.
About Dr. Wei Chen:
Dr. Wei Chen is a professor at the department of Applied Chemistry, School of Chemistry and Materials Science in the University of Science and Technology of China and the Hefei National Research Center for Physical Sciences at the Microscale. Prof. Chen obtained his B.S. degree in materials physics from University of Science and Technology in Beijing in 2008 and his Ph.D. degree in materials science and engineering from King Abdullah University of Science and Technology in 2013. He then worked as a postdoc at Stanford University in 2014 and as a scientist at EEnotech in 2018 before joining in the University of Science and Technology of China in 2019. Prof. Chen has published more than 110 research articles in peer-reviewed international journals, including Nature Energy, Nature Nanotechnology, Nature Communications, PNAS, Journal of the American Chemical Society, Angewandte Chemie International Edition, Advanced Materials, Energy & Environmental Science, Advanced Energy Materials, Advanced Functional Materials, Joule, Matter, Nano Letters, ACS Nano, with a total citation over 12000 times and an H-index of 53. Prof Chen's research interests involve advanced materials and technologies for energy storage and production.
END
Edge-nitrogen doped porous carbon for energy-storage potassium-ion hybrid capacitors
2024-03-06
ELSE PRESS RELEASES FROM THIS DATE:
Revolutionary elephant iPSC milestone reached in Colossal’s Woolly Mammoth Project
2024-03-06
Dallas, TX – March 06, 2024 - Colossal Biosciences (“Colossal”), the world’s first de-extinction company, announces today that their Woolly Mammoth team has achieved a global-first iPSC (induced pluripotent stem cells) breakthrough. This milestone advancement was one of the primary early goals of the mammoth project, and supports the feasibility of future multiplex ex utero mammoth gestation.
iPSC cells represent a single cell source that can propagate indefinitely and give rise to every other type of cell in a body. As such, the progress with elephant iPSCs extends far beyond ...
JAMA study finds facilities treating poor patients penalized by CMS payment model
2024-03-06
INDIANAPOLIS – A new study of more than 2,000 dialysis facilities randomized to a new Medicare payment model aimed to improve outcomes for patients with end-stage kidney disease has found that facilities that disproportionately serve populations with high social risk have lower use of home dialysis and transplant waitlisting and fewer kidney transplants. These facilities thus received reduced performance scores and reimbursement from Medicare.
A high proportion of non-Hispanic Blacks and of those initiating dialysis while uninsured or Medicaid-covered also was found to be an indicator of lower use of home dialysis and transplant waitlisting and fewer kidney ...
For Boston College professor, research into "high latitude" reaches of the seas led to improving accurate access to real-time ocean data
2024-03-06
Chestnut Hill, Mass (03/06/2024) – Boston College Assistant Professor of Earth and Environmental Sciences Hilary Palevsky has been awarded a nearly $1-million National Science Foundation CAREER Award for her work to make remote ocean monitoring data accessible and accurate in real time and produce a series of educational videos to guide students using the data.
Palevsky, whose research focuses on marine biogeochemistry and the mechanisms that enable the ocean to absorb carbon dioxide from the atmosphere, said the funding will allow her to build upon the work she has done to help scientists use the ...
Microbes impact coral bleaching susceptibility, new study shows
2024-03-06
Washington, D.C. – March 6, 2024 – A new study provides insights into the role of microbes and their interaction as drivers of interspecific differences in coral thermal bleaching. The study was published this week in Applied and Environmental Microbiology, a journal of the American Society for Microbiology.
“The diversity, community dynamic and interaction of coral associated microorganisms play important roles in the health state and climate change response pattern of coral reefs,” said lead study author Biao ...
Study: Black boys are less likely to be identified for special education when matched with Black teachers
2024-03-06
WASHINGTON, March 6, 2024—Black male elementary school students matched to Black teachers are less likely to be identified for special education services, according to new research published today. The relationship is strongest for economically disadvantaged students. The study, by Cassandra Hart at the University of California, Davis, and Constance Lindsay at the University of North Carolina at Chapel Hill appeared in the American Educational Research Journal, a peer-reviewed journal of the American Educational Research Association.
The researchers also found that the connection is ...
A new genus of fungi on grasses
2024-03-06
While ecologically important, small mushrooms on monocots (grasses and sedges) are rarely studied and a lack of information about their habitat and DNA sequences creates difficulties in determining their presence or absence in ecological studies and their genetic relationships to other mushroom taxa.
This study led by Drs. Karen W. Hughes and Ronald H. Petersen (University of Tennessee, Knoxville, TN, USA) examined a mushroom species, Campanella subdendrophora, (also known as Tetrapyrgos subdendrophora), which fruits on grasses in the US Pacific Northwest.
The researchers evaluated its phylogenetic position concerning both Campanella and Tetrapyrgos ...
Allen Institute joins the Weill Neurohub
2024-03-06
SEATTLE, WASH.—March 6, 2024—The Allen Institute has officially become the newest member of the Weill Neurohub, a collaborative research network advancing treatments for neurological diseases.
Founded in 2003 by philanthropist Paul G. Allen, the Allen Institute focuses on big questions in biology through a team-based, open science approach, and currently has moonshot projects in neuroscience, cell biology, and immunology institutes.
The new partnership will integrate the Allen Institute’s expertise ...
Revolutionizing surface technology: Introducing multi-component liquid-infused surfaces for adaptive and functional coatings
2024-03-06
Surface coatings have long been essential in various industries, offering protection and functionality. In recent years, liquid-infused surfaces (LIS) have emerged as a groundbreaking technology, revolutionizing how we approach surface coatings. In a review article recently published in Industrial Chemistry & Materials on Feb. 23, 2024, authors Zachary Applebee and Dr. Caitlin Howell explore a novel approach in surface technology that could significantly impact various industries, including healthcare and environmental conservation. A new frontier is emerging: multi-component ...
Nanodevices can produce energy from evaporating tap or seawater
2024-03-06
Evaporation is a natural process so ubiquitous that most of us take it for granted. In fact, roughly half of the solar energy that reaches the earth drives evaporative processes. Since 2017, researchers have been working to harness the energy potential of evaporation via the hydrovoltaic (HV) effect, which allows electricity to be harvested when fluid is passed over the charged surface of a nanoscale device. Evaporation establishes a continuous flow within nanochannels inside these devices, which act as passive pumping mechanisms. This effect is also seen in the microcapillaries of plants, where ...
Scientist proposed a research on space noncooperative target trajectory tracking based on maneuvering parameter estimation
2024-03-06
Firstly, the authors briefly describe two models for tracking the maneuvering trajectories of non-cooperative space targets: the relative dynamics model and the indirect measurement model. In the relative dynamics model, tracking the maneuvering trajectory of the target is modeled as a problem of tracking the target's position over short discrete time intervals. On the other hand, the indirect measurement model transforms radar-derived values directly into measurements in the Local Vertical Local Horizontal (LVLH) coordinate system.
Next, the authors address the tracking problem of targets ...